SOFTWARE PROJECT CHARACTERISTICS, CASE TECHNOLOGY
AND SOFTWARE DEVELOPMENT PRODUCTIVITY

The Relationship between Software Project Characteristics,
Case Technology, and Software Development Productivity

RONALD H. RASCH
AUBURN UNIVERSITY

ANDREW D. CUCCIA
LOUISIANA STATE UNIVERSITY

TAREK AMER
NORTHERN ARIZONA UNIVERSITY

ABSTRACT

In order to meet the increasing demands of the software development process many software
development firms are either using, or considering using, Computer Aided Software Engineering
(CASE) technology. CASE technology is intended to increase productivity, enhance effective com-
munication and integrate work done during various phases of systems design. The objective of this
paper is to provide information regarding the relationship between software project characteristics,
CASE technology, and software development productivity. Eighty-nine software developers from three
major software development organizations completed an experimental instrument designed to gather
their judgments regarding CASE technology effectiveness under several software development condi-
tions.

The results of this study identify the factors that may be relevant to firms when evaluating current
and/or emerging CASE technologies for possible adoption. The software project characteristic of
program complexity is especially influential on the effectiveness of CASE technology attributes. The
research results could offer guidance in selecting preferred technologies as a function of characteristics

of the software to be developed.

INTRODUCTION AND BACKGROUND

As the demands for software development become more
complex, the limits of human cognitive processing capability
may eventually be exceeded. The software development
process, which has traditionally relied on the cognitive and
artistic capabilities of individuals, will need to incorporate
an engineering approach by introducing more formalism and
standardization [9]. In addition, as the magnitude and scope
of software development projects increase, a need arises (o
automate as much of the process as possible. Using worldwide
projected software cost trends, Boehm [2] predicts that a 20
percent improvement in software productivity would be worth
$90 billion worldwide in 1995, Although the need to automate
the software development process exists, it is not clear that
current technology can improve the productivity of software
developers nor eventually affect the software development
firm’s bottom line profitability [14, 15].

To address these issues there is considerable effort on-
going at most software development firms to decrease the

time required to develop software, while maintaining accept-
able quality. A major portion of this effort involves the use of
new technology and techniques. Many software develop-
ment firms are either using, or considering using, Computer
Aided Software Engineering (CASE) technology as part of
their systems development process. CASE technology is
intended to increase productivity, enhance effective com-
munication and integrate work done during various phases
of systems design [13,20]. If CASE technology can provide
these capabilities, it could enbhance, and possibly even change
the software development process itself. Ball [1], however,
noted that enterprises that had purchased the leading CASE
products found that the products were primarily being used
to facilitate graphical presentations for users and managers
and were not being utilized to their purported full capabilities.
In addition, the current use of CASE technology has met
with mixed results on performance and productivity [see, for
example, 11, 16, 18].

A software development firm’s decision to invest in
CASE technology may involve large dollar commitments

Journal of Information Technology Management, Volume VI, Number 1, 1995 1

RASCH, CUCCIA, AND AMER

and, possibly, changes to the way software is developed.
Thus there is a need to better understand the use of this
technology. Software development projects vary widely with
respect to complexity, schedule constraints, and end user
requirements. Highly complex development projects, for
example, may benefit more from the use of certain features
of CASE technology than less complex projects. It may be of
value to a firm to “pick and choose” specific features of
CASE based on the unique aspects of each individual devel-
opment project. The firm would then be in a position to
“tailor” the CASE software suite of tools to be used for each
specific software development project. The objective of this
paper is to provide information regarding the relationship
between software project characteristics, CASE technology
and software development productivity. The results of this
research could provide insights regarding the selection of the
appropriate set of CASE tools to be used for a project and
result in improved software development productivity.

RESEARCH APPROACH

A basic problem encountered when examining the effect
of CASE technology on software development productivity
relates to the practical resource limitations related to meth-
odology. Industry firms cannot afford the resources (man-
power, money, and material) required to perform identical,
parallel software development efforts in order to evaluate the
effect of alternative technologies on productivity. Likewise,
academic institutions performing controlled laboratory ex-
periments do not have the time or manpower to emulate
realistic industry projects [7]. This study attempts to bridge
the gap between these two extreme research methodologies
by employing a behavioral decision making exercise to model
software developers’ judgments concerning the relationship
between software project characteristics, CASE technology
and productivity [12, p. 31].

The basic psychological discipline which underlies this
type of behavioral decision making process builds on
Brunswik’s [5] lens model which portrays the decision maker
as (1) being separated by the outcome of interest by space or
time, (2) faced with multiple overlapping cues which are
imperfect predictors of the future state, and (3) combining
these cues to form a judgment. Einhorn [8] has shown that
individual judgments provide reasonable predictions under
the following conditions: (1) the individual must clearly
understand the cues and be able to identify information from
them, (2) the cues must contain information about the final
judgment, or prediction, and (3) the individual must be con-
sidered an expert. The experimental conditions and research
variables developed and used in this study were structured to
meet these conditions. Since the attitudes of users will mod-
erate any potential benefits to be derived from CASE tech-
nology, software development professionals’ beliefs are not

only proxies for the variables of interest but are important by
themselves.

RESEARCH MODEL AND VARIABLES

Research Model

The research model to be examined is based on the
hypothesis that software development productivity is a func-
tion of (1) the specific attributes of the available technology
(CASE), and (2) the characteristics of the software develop-
ment project. This model is conceptualized as:

Productivity = f (technology, project characteristics)

where the dependent variable, productivity, is defined by the
measures of Quality and Efficiency. The independent tech-
nology variable is defined by specific attributes commonly
associated with CASE technology. The potential effects of
CASE technology on productivity are believed to vary with
certain software development project characteristics. For ex-
ample, some projects may be relatively simple and benefit
litle from CASE technology, while more sophisticated ap-
plications may readily lend themselves to the advantages
inherent in new technologies. Using the software project
characteristics identified by Boehm [2, 3] as product cost
drivers, this paper examines the effects of the following
software project characteristics on productivity: (1) program
reliability, (2) program complexity and (3) scheduling con-
straints. The contribution of CASE technology is expected to
vary across different levels of these software project charac-
teristics. Disregard of these factors, and the potential varia-
tion of productivity enhancement across them, could lead to
inappropriate conclusions as to the benefits of CASE tech-
nology.

Due to the preliminary nature of this research, there is
little empirical, or theoretical, evidence available on which
to state hypotheses regarding expected effects to be found by
this study. Since CASE technology is being developed to aid
in complex software development projects, one would expect
to see the value of this technology increase as product reli-
ability, program complexity and schedule constraints increase.
There may also be some combination of these project char-
acteristics which make CASE technology more, or less,
valuable.

Dependent Variable — Productivity

Productivity can be measured in a number of different
ways. In this study, it is defined to include two constructs
identified by Case [6]: (1) an individual software developer’s
efficiency and (2) overall software product quality. It is
possible that CASE technology may have the potential to
allow software developers to work more efficiently (i.e.,
faster, more independently, and/or with fewer mistakes) yet

2 Journal of Information Technology Management, Volume VI, Number 1, 1995

SOFTWARE PROJECT CHARACTERISTICS, CASE TECHNOLOGY
AND SOFTWARE DEVELOPMENT PRODUCTIVITY

have no effect on the quality of the final functioning product.
Likewise, programmers may not see any effects on their
individual efficiency, yet task integration, improved docu-
mentation, etc. may improve the overall quality of the soft-
ware product.

INDEPENDENT VARIABLE —
CASE TECHNOLOGY ATTRIBUTES

One problem in examining CASE technology is reach-
ing an agreement on what the technology is. The CASE
technology umbrella covers a number of attributes, all of
which cannot be expected to contribute to productivity equally
[10, 14]. An examination of the effects of CASE technology
without recognition of the considerable differences across
products and their specific functionalities would make little
practical contribution.

To address this ambiguity, this study defines specific
attributes commonly associated with CASE products. This
approach builds on the prior work of Hanson and Rosinski
[10] and Norman and Nunamaker [14, 15] and provides the
ability to address specific functions or attributes available in
various CASE products. Since this approach does not focus
on specific CASE products, the study results can be gener-
alized based on CASE technology attributes as opposed to
being constrained to a particular CASE software product.

INDEPENDENT VARIABLE — SOFTWARE
PROJECT CHARACTERISTICS

Using the characteristics identified by Boehm [2, 3] as
software product cost drivers, this research examines the
effects of (1) product reliability, (2) program complexity and
(3) scheduling constraints on software development produc-
tivity.

Product reliability relates to the inherent reliability re-
quired in the delivered software product. This reliability is
normally associated with the “seriousness” of the impact of a
- software failure. The reliability of software developed to be
used in an imbedded system of a United States Air Force
tactical fighter aircraft, for example, would be very high
since software failure could result in loss of human life and a
multi-million dollar aircraft.

Program complexity relates to the technical aspects in-
volved in the actual software program logic, structure, and
coding. Program complexity could range from simple code
involving a few non-nested decision and iteration operations
(DO, CASE, IF, etc.) to highly complex code which requires
re-entrant and recursive coding and multiple resource
scheduling with dynamic, changing priorities.

Scheduling constraints relate to the time frame allowed
to complete the software project. This could range from a
non-rushed forty-hour work-week environment to a highly
intense “crash” project with maximum overtime and heavy

time pressure on software developers to complete the project
as soon as possible. The contribution of CASE technology is
expected to vary across different levels of these three project
characteristics.

RESEARCH METHODOLOGY

A judgment-based research instrument was developed
incorporating the three variables discussed above: (1) pro-
ductivity, (2) CASE technology attributes, and (3) software
project characteristics. This section describes the opera-
tionalization of each of these variables. A preliminary version
of the instrument was pilot-tested with twelve software de-
velopers for ease of understanding, realism, time require-
ments, fatigue, appropriateness of attributes included, etc.!

None of these responses were used in the data analyzed
in this paper.

Productivity

To capture the dependent variable of productivity the
study participants were asked to assess the potential contri-
bution of CASE technology to both the Quality of the final
software product and to the Efficiency with which it could be
developed. They were also asked to make the same evaluations
for potential contributions of six different attributes associated
with CASE technology (defined below). Judgments were
made on a Lickert scale ranging from 1 (no contribution over
related manual methods) to 7 (significant contribution over
related manual methods).

CASE Technology Attributes

Table 1 lists specific attributes commonly associated
with CASE products which have been identified in previous
studies. These studies ranked the usefulness of certain at-
tributes based on professionals’ perceptions and grouped
them based on their productivity and complexity [15], and
their sophistication and their necessity [10]. Fifteen attributes
based on Norman and Nunamaker’s [14, 15] research were
consolidated with twenty attributes identified by Hanson and
Rosinski [10]. This list of attributes was circulated to twelve
practitioners and academics involved with software develop-
ment. Based on their responses, the original list was consoli-
dated into six attributes that were chosen to cover as broadly
as possible the general rankings and classifications previously
identified by Hanson and Rosinski [10] and Norman and
Nunamaker [14, 15].

The software developers used for pilot testing were taken from the
three software development firms that participated in the study.
This iterative pilot testing process resulted in an experimental
instrument that incorporated terminology and descriptions that were
familiar to all participants used in this study.

Journal of Information Technology Management, Volume VI, Number 1, 1995 3

RASCH, CUCCIA, AND AMER

Table 1
CASE Attributes Considered
Hanson and Rosinski [10] Norman and Nunamaker [14, 15]
1. Interactive Debugger a Data Flow Diagram 1
2. Screen Editor a Data Dictionary 1
3. Subnetwork Checker b Analysis-Entity List 1
4. Process Meter b Import/Export Faciltiy 2
5. Configuration Manager b PC/Mainframe Transportable 2
6. Process Monitor b LAN Support 2
7. Storage Monitor b Screen/Report Design 3
8. Stream Editor c Presentation Graphics 3
9. Big File Splitter c Analysis-Report Writer 3
10. Big File Scanner c Structure Charts 3
11. Source Beautifier c Record Layout Generator 3
12. Test Coverage Analyzer d Entity Relationship Model 4
13. Auto Test Generator d Logical Data Model 4
14. Print File e Analysis-Graph Analysis 4
15. Data Dictionary e Structure Diagrams 4
16. Source Code Control e
17. Private Library [
18. File Comparator e
19. Program Cross Referencer e
20. Display e
Key to groupings

Hanson and Rosinski:

a. Minimally necessary, not sophisticated

b. Necessary but not necessarily improving produc-
tivity; sophisticated; used for testing rather than
fine-tuning

c. Used for fine-tuning; sophisticated

d. Used for fine-tuning; not necessary nor sophisticated

e. Neither overly sophisticated nor productivity enhancing

Norman and Nunamaker:

1. Most productive; complex modelling tool
2. Minimal productivity improvement

3. Increased productivity; simple tool

4. Increased productivity

The six attributes are (1) Reference Dictionary, (2) Re-
source Monitor, (3) LAN Support, (4) Interactive Debugger,
(5) Project Management, and (6) Model Generation. A de-
scription of these attributes is provided in Table 2. Model
Generation, for example, includes the attributes of data flow
diagram, entity/relationship model, structure charts, graph
analysis, and logical data model structure diagrams identi-
fied by Norman and Nunamaker. The six attributes identified
were then circulated to three other senior software develop-
ers (one from each of the three firms participating in this
study) for further evaluation regarding recognizability, un-
derstanding, agreement as to their uses, etc. The finalized
description of these attributes was incorporated into the re-
search instrument.

Software Project Characteristics
Scenarios were developed which described specific soft-

ware products to be developed, their applications and the en-
vironment in which they were to be developed. The develop-
ment of the wording for the scenarios evolved through iterative
discussions with the three senior software developers (one
from each firm). These scenarios incorporated the three
software project characteristics of (1) product reliability, (2)
program complexity, and (3) scheduling constraints. Each of
these characteristics was manipulated at two levels (high and
low) in an experimental design constructed to determine
their moderating effects for the six CASE attributes with
respect to the productivity measures of Quality and Efficiency.
In this manner the study participants were able to envision a
realistic design situation and had to assess the impact of
CASE technology for a specific set of circumstances that
captured reliability, complexity and schedule considerations.

The HIGH RELIABILITY scenario, for example, pre-
sented the following system description: '

4 Journal of Information Technology Management, Volume VI, Number 1, 1995

SOFTWARE PROJECT CHARACTERISTICS, CASE TECHNOLOGY
AND SOFTWARE DEVELOPMENT PRODUCTIVITY

Table 2

Description of Six Attributes Used in Study

Reference dictionary — Automatic generation of a central respository for all definitions of data, and also the
clearinghouse for all of the information that is associated with a given product.

Resource monitor — Inserts probes into a program to measure the time and resources spent executing particular parts
of a program (e.g., how much time is spent in a particular routine).

LAN Support — The ability to be supported by Local Area Networks.

Interactive debugger — Allows incremental execution of a program, stopping it to examine parameters, variables,
and data elements.

Project management — The ability to estimate, plan and track project milestones using computer-based technology
and also generate graphical output (either screen or hard copy).

Model generation — The use of on-line software technology to create and maintain graphic models useful for
software development (e.g., box structures, data flow diagrams, entity-relationship diagrams, finite-state machine

diagrams, structure charts (Constantine), structure diagrams (Jackson), etc.).

Your firm has recently been selected to develop the
software component of a civilian air traffic controller
system. This system will be installed at a large airport in a
major metropolitan area. The air traffic will be very
heavy with peak periods having approximately 150 air-
craft in various stages of landing and takeoff patterns
using dual runways. Software failure could cause colli-
sions that result in loss of human lives and multi-million
dollar aircraft.

The corresponding LOW RELIABILITY scenario was
presented by the following description:

Your firm has recently received a contract to de-
velop the software component for the management in-
formation system of a major corporation. The system
must be capable of handling a high volume of accounting-
based transactions and provide on-line access for man-
agement personnel. Software failure would result only in
a temporary slowdown which could be tolerated in the
daily operations of the corporation.

Based on the above descriptions regarding inherent sys-
tem reliability considerations, it is apparent that HIGH and
LOW reliability are relative terms in this study. This was an
intentional objective so that the scenarios contain as much
realism as possible. The LOW reliability scenario (the de-
velopment of a transaction based accounting system), how-
ever, might be thought of as requiring high reliability in
other contexts.

The significant concept in study, however, is that the
subjects (through their own interpretation) view the failure
of an air traffic controller system as more catastrophic (in
some sense) than the failure of a transaction based account-
ing system. This perception leads to a higher concern for
software product reliability. A sample of the research instru-

ment is presented in Attachrhent A where Scenario 1 con-
tains a software design task with LOW reliability, LOW
complexity, and LOW schedule constraints depicted in para-
graphs one, two and three, respectively. Scenario 2 (in At-
tachment A) contains a design task with HIGH reliability,
HIGH complexity, and HIGH schedule constraints depicted
in paragraphs one, two and three, respectively. The other
versions of the instrument contained combinations of these
paragraphs to develop scenarios which represented all possible
combinations of the three factors. (See Technical Appendix
for discussion of the research design.)

Procedure

The data were gathered at three major software develop-
ment organizations located in the northeast, southwest and
southeast United States. These firms are involved in a wide
spectrum of software development projects ranging from
embedded systems on classified government contracts to
telecommunications for public telephone systems and pay-
roll systems for business organizations. Usable data from a
total of 89 subjects was collected. All respondents were
informed of the purpose of the study and were guaranteed
anonymity. The subjects had an average of 10 years experi-
ence in software development. All three of the firms that
participated in this study advocate an integrated approach to
the development of software and the participants in this
study were exposed to all phases of development from initial
requirements definition to final system implementation. This
involvement in the total software development process pro-
vided the participants with a high level of experience regarding
the six technology attributes examined in this study.

Journal of Information Technology Management, Volume VI, Number 1, 1995 5

RASCH, CUCCIA, AND AMER

ANALYSIS AND RESULTS

The experimental research design used in this study
facilitated a completely-crossed three-factor ANOVA
(ANalysis Of V Ariance) approach to analyze the empirical
data. Each of the three independent variables (product reli-
ability, program complexity and scheduling constraints) were
manipulated across scenarios at two treatment levels each
(HIGH and LOW), resulting in eight different scenarios. The
dependent variables were software developers’ judgments of
the contribution of CASE attributes to product Quality and to
software developers’ Efficiency. Fourteen different analyses
were performed; two examining the contribution of CASE
technology (overall) to program Quality and programmer
Efficiency, and twelve examining the contributions of each
of the six specific CASE attributes.

The results of this study provide information regarding
the relationship between software project characteristics,
CASE technology and productivity. Before discussing these
results, however, certain limitations of this study must be
noted. First, the study examines software development pro-
fessionals’ judgments of the effect of CASE technology on
productivity rather than actual productivity changes them-
selves. However, since the subjects were experienced software
development professionals and were given meaningful cues
(consistent with the lens model paradigm), their judgments
are considered to be valid proxies for what would be observed
in real life. Additionally, the subjects’ experience across the
entire software development process adds much to the study’s
external validity.

Second, only six separate CASE attributes were examined
directly. The results with respect to these attributes cannot be
extended to all dimensions of CASE technology. These six
attributes, however, were chosen so as to be as representative

of CASE technology as possible. Also, subjects were asked
to make an overall assessment of CASE without regard to
any specific CASE attributes. In this way, their judgments
regarding CASE technology as a whole, in addition to spe-
cific CASE attributes were captured. It is felt, therefore, that
the results presented here represent software development
professionals’ judgments of the value of the technology in
general in addition to the specific attributes included in the
study. :

Overall Influence of CASE Technology

The three software project characteristics of reliability,
schedule, and complexity have significant implications re-
garding the overall value of CASE technology. These effects
are in the expected direction, indicating that CASE technol-
ogy becomes more useful as the software development task
becomes more complex, requires higher reliability specifica-
tions, or is performed according to an accelerated schedule.
The statistical results are presented in Table 3. The one
exception indicates that the potential contribution of CASE
technology to programming Efficiency is not affected by
reliability considerations. Although software developers felt
that the Quality of software projects with HIGH reliability
requirements will be improved by CASE technology, they
indicated that their individual Efficiency will not affected by
the use of CASE technology. Since reliability considerations
relate to the extent to which the software program will actu-
ally perform in its operating environment, the use of CASE
technology (i.e., the ability to automate and integrate pro-
gramming tasks that would otherwise be performed manually)
would intuitively seem to be of value regarding improved
programming efficiency.

Table 3
ANOVA Results** for Quality and Efficiency

CASE Technology Interactive LAN Model Project Resource Reference
Overall Debuggers Support Generation Management Monitor Dictionary

Source Q* E* Q E Q E E Q E Q E Q E
Reliability .0041 0001 .0002 0042 .0001 0050
Complexity .0001 .0001 .0062 .0001 .0149 .0008 .0001 .0002 .0372 .0042 .0033 .0001 .0004 .0001
Scheduling .0356 .0273 0275 0008 .0171 0018 .0002 .0099 0033
RelxComp
RelxSched 0109
CompXSched

* Q and E represent the dependent variables of Quality and Efficiency respectively.

** For clarity, only p values of .05 or less are shown in this table.

6 Journal of Information Technology Management, Volume VI, Number 1, 1995

SOFTWARE PROJECT CHARACTERISTICS, CASE TECHNOLOGY
AND SOFTWARE DEVELOPMENT PRODUCTIVITY

Figure 1

Interaction Effect on Software Quality Using Interactive Debuggers

5.6

3.5

Quality

5.3

52

LOW

HIGH

Schedule

Influence of Individual Attributes of CASE Technology

When CASE technology was further broken down into
its individual attributes, additional findings provided greater
ingight into the use of CASE technology. The impact of
Interactive Debuggers on Quality is relatively complex due
to an interaction between product reliability and schedule
constraints, This interaction effect can be decomposed as
shown in Figure 1. The vertical axis in Figure 1 measures the
extent to which the use of Interactive Debuggers would
enhance software program Quality. High reliability projects
behave as expected with the value of Interactive Debuggers
increasing as schedule constraints increase. For LOW reli-
ability requirements, however, the value of using Interactive
Debuggers decreases as schedule constraints increase.

The ability to function in a LAN environment improved
Quality and Efficiency for software projects that contained
either complex programming of accelerated schedule re-
quirements. Neither component of productivity, however,
was enhanced by LAN support based on product reliability

considerations. Similar results were obtained for the Project
Management feature of CASE technology. These findings
indicate that product reliability characteristics have little
effect on the value of providing LAN support or Project
Management capabilities. Both of these CASE attributes
relate more to the management control of projects than to
actual technical software development tasks. Reliability,
however, relates to technical performance requirements or
specifications of the completed software. This finding,
therefore, is logically consistent in that software developers
may feel that CASE attributes aimed at project management
do not enhance the technical attributes of the software.

All three project characteristics (reliability, complexity,
and schedule) were found to impact the contribution of the
Model Generation feature of CASE technology for both
productivity components (Quality and Efficiency). The one
exception relates to the lack of any effect of schedule on the
usefulness of Model Generators regarding Efficiency. The
use of on-line software technology to create and maintain

Journal of Information Technology Management, Volume VI, Number 1, 1995

RASCH, CUCCIA, AND AMER

graphic models to enhance their Efficiency was not affected
by schedule considerations. Quality, however, was enhanced
by the use of Model Generators.

The usefulness of a Resource Monitor feature was also
affected by all three project characteristics. The one excep-
tion relates to the lack of any effect of schedule on the
usefulness of Resource Monitors regarding Efficiency. The
impact of using a Reference Dictionary feature of CASE
technology was also affected by all three project character-
istics. One exception relates to the lack of any effect of
reliability on the usefulness of a Reference Dictionary when
addressing Quality. The other exception relates to the lack of
any effect of schedule on the usefulness of a Reference
Dictionary when addressing Efficiency.

SUMMARY AND CONCLUSIONS

This study identifies factors that may be relevant to
firms when evaluating current and/or emerging CASE tech-
nologies for possible adoption. It was found that the software
project characteristics of reliability, complexity, and sched-
ule constraints affect the impact of CASE attributes on soft-
ware development productivity. Most notable is the across
the board influence of software project complexity on software
developers’ perceptions regarding the effectiveness of CASE
technology attributes on the development process. This fac-
tor was strongly significant across all CASE attributes. This
strong effect is as expected given that CASE technology is
being developed to aid in complex software development
projects. A comparatively lesser across the board effect was
found for the software project characteristics of scheduling
and reliability.

The interaction, or combination, effect of reliability and
schedule constraints results in reduced productivity when
using Interactive Debuggers on low reliability projects as
schedule constraints become greater. This finding indicates
that the use of Interactive Debuggers has less value on projects
with “tight” schedules, given low reliability requirements.
Similarly, projects with low schedule pressure do not benefit
from the use of Interactive Debuggers if reliability require-
ments are high. A possible explanation for this finding is that
the incremental execution of a program, stopping it to examine
parameters, variables and data elements was considered more
time-consuming than alternative approaches used by the
software developers. These alternative approaches were not
identified in this study and further research is needed to
understand this counter-intuitive finding,

The ability to function in a LAN environment improved
Quality and Efficiency for software projects that contained
either complex programming or accelerated schedule re-
quirements. Neither component of productivity, however,
was enhanced by LAN support based on product reliability
considerations. Similar results were obtained for the Project

Management feature of CASE technology. These findings
indicate that product reliability characteristics have little
effect on the value of providing LAN support or project
management capabilities. Both of these CASE attributes
relate more to the management control of projects than to
actual technical software development tasks. Reliability,
however, relates to technical performance requirements or
specifications of the completed software. This finding, there-
fore, is logically consistent in that software developers may
fecl that CASE attributes aimed at project management do
not enhance the technical attributes of the software.

Use of the Model Generation feature of CASE technol-
ogy resulted in increased productivity as all three project
characteristics (reliability, complexity, and schedule) were
increased. This result indicates that the ability to generate
model abstractions enhances productivity under all project
situations. This result tends to confirm anecdotal evidence
that CASE developers have been presenting in the trade
journals. The usefulness of a Resource Monitor feature and a
Reference Dictionary feature were also affected by all three
project characteristics.

The above research results offer practical guidance in
selecting preferred technologies as a function of characteristics
of the software to be developed. In addition, they suggest
when there are preferred technologies to use across-the-
board. From a more global perspective, this research advances
the state of knowledge regarding the relationships between
software project characteristics, CASE technology and pro-
ductivity in the software development process. The method-
ology employed enabled assessments of both current and
projected use of CASE technologies and provides a basis for
future research to gain additional insight into factors affect-
ing software development productivity. The above findings
identify a number of issues related to factors that affect the
productivity of software development professionals. Exten-
sion of this work could have a major impact on understand-
ing and improving the productivity of software development.

REFERENCES

[1] Ball, S. Successful implementation of computer-aided
software engineering. In E. Chikofsky (ed), Advance
Papers for the First International Workshop on Com-
puter-Aided Sofiware Engineering, Vols. 1 and 2, May
27-29, 1987, Cambridge, Mass., pp. 128-138.

[2] Boehm, B. Improving software productivity, Computer,
(September, 1987), pp. 43-57.

[3] . Improving software productivity. Proceedings
on The 23rd Annual IEEE Computer Society Interna-
tional Conference, September, 1981a, pp. 1-16.

. Software Engineering Economics, Prentice Hall,
NJ, 1981b.

[5] Brunswik, E. The Conceptual Framework of Psychol-

(4]

8 Journal of Information Technology Management, Volume VI, Number 1, 1995

SOFTWARE PROJECT CHARACTERISTICS, CASE TECHNOLOGY
AND SOFTWARE DEVELOPMENT PRODUCTIVITY

o0gy, University of Chicago Press, Chicago, 1952.

[6] Case, A., Jr. Information Systems Development: Prin-
ciples of Computer-Aided Software Engineering, Prentice
Hall, NJ, 1986.

[7] Dunsmore, H., Zage, W., Zage, D., and Cabral, G.,
Building a case for CASE. SERC-TR-8-P, Software
Engineering Research Center, Purdue University, West
Lafayette, IN, December, 1987.

[8] Einhom, H. Expert judgement: Some necessary condi-
tions and an example. Journal of Applied Psychology,
1974, Vol. 1, No. 5, pp. 562-571.

[9] Goldberg, R. Software engineering: An emerging disci-
pline, Systems Journal, 25, 314, (1986), pp. 334-353.

(10] Hanson, S. and Rosinski, R. Programmer perceptions of
productivity and programming tools, Communications of
the ACM, Feb. 1985, pp. 180-189.

{11]Henderson, J. and Cooprider, J. Dimensions of I/S
planning and design aids: A functional model of CASE
technology, Information Systems Research, Sept. 1990,
pp- 227-254.

[12]Libby, R. Accounting and Human Information Process-
ing: Theory and Applications, Prentice-Hall, New Jer-
sey, 1981.

[13]Lucas, H. The Analysis, Design, and Implementation of
Information Systems, 4th Ed., McGraw-Hill, New York,
1992,

[14]Norman, R. and Nunamaker, J. An empirical study of

information systems professionals’ perceptions of CASE
technology. Proceedings of the Ninth International
Conference on Information Systems, Nov. 30-Dec. 3,
1988, Minneapolis, Minnesota, pp.111-118.

[15]Norman, R. and Nunamaker, J. CASE productivity per-
ceptions of software engineering professionals. Com-
munications of the ACM, Sep, 1989, pp. 1102-1108.

[16] Orlikowski, W. CASE tools as organizational change:
Investigating incremental and radical changes in sys-
tems development. MIS Quarterly, Sept. 1993, pp. 309-
340.

[17]1Rasch, R. and Tosi, H. Factors affecting software de-
velopers’ performance: An integrated approach. MIS
Quarterly, Sept. 1992, pp. 395413.

[18] Vessey, 1., Jarvenpaa, S. and Tractinsky, N. Evaluation
of vendor products: CASE tools as methodology com-
panions. Communications of the ACM, Apr. 1992, pp.
90-105.

[19] Wagenaar, W. Note on the construction of digram-bal-
anced latin squares, Psychological Bulletin, Vol. 72,
No. 6, 1969, pp. 384-386.

[20] Wilkinson, J. Accounting Information Systems: Essen-
tial Concepts and Applications, John Wiley & Sons, New
York, 1993.

{21] Winer, B. Statistical Principles in Experimental Design,
McGraw-Hill, 1971,

ATTACHMENT A — Samples of the Experimental Instrument

Scenario 1

Your firm has recently received a contract to develop
the software component for the management information
system of a major corporation. The system must be capable
of handling a high volume of accounting-based transactions
and provide on-line access for management personnel. Soft-
ware failure would result only in a temporary slowdown
which could be tolerated in the daily operations of the corpo-
ration.

Based on past work done in this area, your firm has
indicated that this project’s software development will be
relatively simple involving code with a few non-nested de-
cision and iteration operations (DO, CASE, IF, etc.)

This project has a well-defined scope and is expected to
be completed during working routine hours (no overtime).

Scenario 2

Your firm has recently been selected to develop the
software component of a civilian air traffic controller system.
This system will be installed at a large airport in a major
metropolitan area. The air traffic will be very heavy with
peak periods having approximately 150 aircraft in various
stages of landing and takeoff patterns using dual runways.
Software failure could cause collisions that result in loss of
human lives and multi-million dollar aircraft.

Due to the unique nature of the customer’s needs (to be
explained in detail at a future meeting), this project’s soft-
ware development will be highly complex and will require
re-entrant and recursive coding and multiple resource sched-
uling with dynamic, changing priorities.

Due to delays in contract negotiations, the software
development time schedule will be very tight. To complete
the project on schedule, it is estimated that 10-20 hours of
overtime per week will be required for all personnel in-
volved with the project.

Journal of Information Technology Management, Volume VI, Number 1, 1995 9

RASCH, CUCCIA, AND AMER

TECHNICAL APPENDIX

Research Design

In order to control for the many possible individual
differences between the subjects (e.g., ability, experience,
past projects etc.) and to prevent such differences from af-
fecting the analyses, a repeated measures experimental de-
sign was used.! Winer [21] indicates that the primary purpose
of a repeated measures design is to provide a control on
differences between subjects. A fully within-subjects design,
however, with each subject receiving all combinations of the
three independent software project characteristics would re-
quire a subject to make assessments for eight separate reli-
ability/complexity/scheduling combinations (i.e., three factors
at two levels each). To minimize the difficulty of the experi-
mental task and to prevent subjects from potentially losing
interest and not devoting their full attention to each judgment,
a one-half replication was used. Subjects were randomly
assigned to two balanced groups. The subjects in each group
made assessments regarding four different scenarios. These
four scenarios included all levels of each variable, but not all
combinations. In this way all main effects and two-factor
interactions were still examined within-subjects, controlling
for individual differences across subjects, while each subject
need only receive four scenarios [21, p. 635].2 It is believed
that the similarity of the judgments made with respect to
each of four cases prevented the task from being overly
demanding and that a within subjects design made the ma-
nipulations more salient while controlling for any effects of
between-subject variance.’

Initial Analysis

A number of statistical analyses were carried out to
examine issues related to the administration and integrity of
the research experiment. First, there were no statistically

'It has been shown that individual personality characteristics may
affect software professionals’ perceptions of productivity [17].

?In this design, the three-factor interaction is confounded with any
differences which might exist across the groups. This is not
considered to be a problem, however, since subjects were randomly
assigned to groups. In addition, there is no expectation of a significant
three-factor interaction.

*The order in which the scenarios were presented to subjects was
controlled to prevent confounding the manipulations with any order
effects. Such might be the case if, for example, the high complexity
scenario was perceived as more complex after receiving the low
complexity manipulation than when received first. This was done
by using a digram-balanced latin square [19] within each block,
resulting in eight different sequences. Subsequent tests revealed
that while the order of presentation did moderate subjects’
perceptions of the strength of manipulations, it had no main effect
on subjects’ productivity ratings.

significant differences in the responses across the three firms
represented in the sample. Subject responses were, therefore,
combined across the three firms for the subsequent analyses
which are reported below. This finding also provides evidence
for the generalization of the results across at least the three
firm environments represented in the sample.

Second, subjects responded to post experimental ques-
tions regarding their judgments of the two treatment levels
for each of the software project characteristic factors: prod-
uct reliability, program complexity, and scheduling con-
straints. The software developers judged all the intended
HIGH treatment levels to be significantly higher than the
intended LOW treatment levels for each factor (p<.0001).
This treatment level manipulation check provides assurance
that the treatment manipulations were successful in the ex-
perimental materials used by the software developers.

Overall Influence of CASE Technology

All three software project characteristics examined were
found to moderate the contribution of CASE Technology
Overall for both productivity components (Quality and Effi-
ciency). The statistical results are presented in Table 3. This
supports the prediction of an influence of software project
characteristics on productivity and also supports anecdotal
claims made by CASE manufacturers regarding its positive
impact on productivity. The one exception relates to the lack
of any moderating effect of software project reliability on the
use of CASE Technology Overall regarding Efficiency. There
were no significant interaction effects regarding the overall
effect of using CASE technology.

Interactive Debuggers

Interactive debuggers were judged to improve Quality
more for projects that had HIGH complexity (p=.0062)
characteristics. There were also effects on Quality due to a
combination effect when reliability and schedule character-
istics were considered together (p=.0109). This interaction
effect indicates a more complex phenomenon regarding the
impact of Interactive Debuggers on Quality. Interactive
Debuggers, further, result in improved Efficiency when used
on projects with HIGH complexity (p=.0001) specifications.

LAN Environment and Project Management

The ability to function in a LAN environment improved
Quality and Efficiency more in both complex (p=.0149 and
p=-0008) and accelerated schedule (p=.0275 and p=.0008)
projects. Product reliability, however, did not moderate the
contribution of LAN support for either component of pro-
ductivity. Similar results were obtained for the Project Man-

10 Journal of Information Technology Management, Volume VI, Number 1, 1995

SOFTWARE PROJECT CHARACTERISTICS, CASE TECHNOLOGY
AND SOFTW ARE DEVELOPMENT PRODUCTIVITY

agement feature of CASE technology with p values ranging
from .0002 to .0372. There were no significant interaction
effects present for either LAN Support or Project Manage-
ment attributes.

Model Generation

All three project characteristics (reliability, complexity,
and schedule), however, were found to moderate the contri-
bution of the Model Generation feature of CASE technology
for both productivity components (Quality and Efficiency).
The one exception relates to the lack of any moderating
effect of schedule on Efficiency. Levels of statistical signifi-
cance ranged from p=.0001 to p=.0171 and there were no
statistically significant (p < 0.05) interaction effects between
any of these project characteristics for the Model Generation
feature.

Resource Monitor

The benefits of a Resource Monitor feature were also
moderated by all three project characteristics. The one ex-
ception relates to the lack of any moderating effect of
schedule on Efficiency. The existence of a statistically sig-
nificant interaction effect between product reliability and
complexity (p=.0137) implies a more complex phenomenon
regarding the impact of Resource Monitors on Efficiency.

Reference Dictionary

The impact of using a Reference Dictionary feature of
CASE technology was also moderated by all three project
characteristics with two exceptions. One exception relates to
the lack of any moderating effect of reliability on Quality.
The other exception relates to the lack of any moderating

effect of schedule on Efficiency. The existence of an interac-
tion effect on Quality, however, indicates that the relative
effect of using a Reference Dictionary may be moderated by
the interaction of reliability and complexity (p=.0433).

AUTHORS’ BIOGRAPHIES

Ronald H. Rasch is an Associate Professor at Auburn
University. Dr. Rasch received his Ph.D. from The Univer-
sity of Texas at Austin and was a Managemens Information
Systems Consultant and Designer for the United States Air
Force. His current research interests focus on increasing
productivity in the Information System development process
and determining information system requirements during
the system analysis and design process. His research has
been published in a wide variety of journals including Au-
diting: A Journal of Practice and Theory, IEEE Transactions
on Systems, Man and Cybemetics, The Journal of Informa-
tion Systems, and MIS Quarterly.

Tarek Amer is an Assistant Professor at Northern Ari-
zona University. Dr. Amer received his Ph.D. from The Ohio
State University and his current research focuses on the
behavioral aspects that affect information system design. His
research has been published in a wide variety of journals
including Auditing: A Journal of Practice and Theory and The
Journal of Information Systems.

Andrew D. Cuccia is an Assistant Professor at Louisi-
ana State University. Dr, Cuccia recently received his Ph.D.
Jrom the University of Florida where he investigated the
behavioral models inherent in developing and using ac-
counting information systems.

Journal of Information Technology Management, Volume VI, Number 1, 1995 11

