APPLICATIONS SOFTWARE MAINTENANCE MANAGEMENT

Problems and Issues in
Application Software Maintenance Management

PRASHANT PALVIA
THE UNIVERSITY OF MEMPHIS

AARON PATULA
UNIVERSITY OF MINNESOTA

JOHN NOSEK
TEMPLE UNIVERSITY

ABSTRACT

This article is a comprehensive reexamination, after over a decade, of various software mainte-
nance issues and problems. A survey was conducted of information systems professionals using a
comprehensive questionnaire. Among other issues, twenty-six specific problems were rated by these
individuals. The findings indicate that maintenance problems are still pervasive, and can be classified
into seven primary areas: programmer time availability, programmer effectiveness, operations reliability,
user knowledge, product quality, hardware/software limitations, and user training. The article also
proposes a contingency model for explaining the various maintenance issues. Several hypotheses are
postulated on the basis of the model, and statistical support was found for several of the hypotheses.
Finally, managerial implications are discussed and recommendations are made based on the findings.

INTRODUCTION

Over a decade ago, Communications of the ACM pub-
lished an article describing problems in software maintenance
based on a comprehensive study performed by Lientz and
Swanson [9]. This study was an indepth examination of
software maintenance in data processing departments, and is
described in detail in [10]. In an earlier article, Lientz et al.
[11] described salient characteristics of application software
maintenance.

More than a decade later, software maintenance remains
a thorny issue and continues to consume significant resources
from corporate information systems (IS) department budgets.
Estimates of the ratio of maintenance to total IS budget have
consistently ranged between 50% to 80% [1,8]. Yet, main-
tenance suffers from organizational obstacles. It is typically
accorded a second-class status, and development of new
systems often takes priority over it [12,16]. As Kim and
Westin [8] have pointed out, maintenance is not merely
concerned with technical issues but also with the environment
of the department and organizational issues. Research into
organizational aspects of maintenance is limited. Some sug-

gestions offered for organizational alignment of maintenance
include the redefinition of IS activities into “installed” and
“future” systems [16], and having a seamless split between
initial development and subsequent refinement [15]. Another
suggestion offered is to make effective use of incomplete
data for maintenance management [14]. On the technical
side, Banker et al. [1] have examined the productivity of
software maintainers and have studied the impact of size and
complexity of business systems, and a number of environ-
mental variables. Some of these factors may be manipulated
to improve maintenance productivity.

Given the persistent problems in software maintenance,
we reexamine, in detail, the current state and problems of
maintenance. This article provides this new information as
well as develops insights into current problems and practices
in maintenance management. The same comprehensive
questionnaire that was used by Lientz and Swanson [9,10]
was used in the present study and was administered to IS
professionals. Minor modifications to the questionnaire were
made only to accommodate changes in software development
methods that have since taken place. While summary remarks

Journal of Information Technology Management, Volume VI, Number 3, 1995 17

PALVIA, PATULA AND NOSEK

comparing the Lientz and Swanson results and the present
results are made in the article, the main focus is to present
contemporary results and obtain insights into the many rela-
tionships.

THE SURVEY

The questionnaire used in this study is an adaptation of
the one used by Lientz and Swanson [9,10]. The questionnaire
is quite extensive and comprehensive (a total of 16 pages). It
had the following sections: a section on demographic infor-
mation about the organization, a section on general infor-
mation about the MIS department, and several sections on a
specific operational application system chosen by the re-
spondent. The sections on the application system included:
information about the various characteristics (e.g., size, pro-
gramming language, database capability, system type) of the
application system, types of maintenance activities being
performed, types of maintenance controls used, and types of
maintenance problems being experienced. The questionnaire
was mailed to two hundred and forty members of the Data
Processing Management Association (DPMA) members in
the northeast and midsouth regions of the United States.
Followups were conducted by both telephone and mail. A
total of 52 questionnaires were returned providing a response
rate of 22%. This response rate is typical of surveys reported
in the Management Information Systems literature.

Some demographic information about the sample is
worthwhile to examine. The average and the median DP
budget of the respondents’ organizations was in the range of
$500,000 to $1 million. The direct manager of the head of the
IS department in 39.6% of the cases was the CEO, and in
30.2% of the cases was the VP of Finance. In 69.8% cases,
the participants worked in centralized information systems.
18.9% of the systems were decentralized. The median num-
ber of all employees in responding organizations was 550.
The median size of the full time DP staff was 10 with 6
devoted to applications development and maintenance. The
DP budget, on the average, was 3% of the total company
budget. The median age of the application system was 38
months, and the average was 66 months,

MAINTENANCE PROBLEMS

Lientz and Swanson [9] reported a large set of mainte-
nance related problems. This set of problems provides a
fairly accurate and comprehensive representation of the nature
of maintenance issues. The same set of 26 problems was
evaluated in the current study (see Table 1). Note that the
problems being investigated are either technical or organiza-
tional, however still in the domain of management concern.

A five-point scale was used to evaluate the current
acuteness of each problem, ranging from 5 (major problem)

TABLE 1
An Inventory of Maintenance Problems

. Maintenance personnel turnover

. Documentation quality

. System hardware and software changes

. Demand for enhancements

. Skills of maintenance programmers

. Quality of original programming

. Number of maintenance programmers availability
. Competing demands for programmer time

O 00 1 QN v B W N -

. Lack of user interest

—_
=]

. System run failures

—
[

. Lack of user understanding

J—
3]

. Program storage requirements

p—
w

. Program processing time requirements

—_
N

. Maintenance programmer motivation

p—
W

. Forecasting maintenance programmer requirements
. Maintenance programming productivity

. Hardware and software reliability

. Data integrity

. Unrealistic user expectations

[I
O O 00 3 Q°

. Adherence to programming standards

. Management support

. Adequacy of system design specifications
. Budgetary pressures

. Meeting scheduled commitments

N NN NN
W A W N -

. Inadequate user training

[s]
(o))

. Turnover in user organization

to 1 (no problem at all). An average over all respondents
provided a measure of problem acuteness. A troubling, yet
not totally surprising, finding was that the state of mainte-
nance since Lientz and Swanson’s study has not changed
significantly. While, on individual problem basis, there was
no statistical change at the 95% confidence level in problem
acuteness, there was a slight increase in problem acuteness
when all problems are considered together. At higher p
values of significance, problems that appear less acute now
are processing and storage requirements, and inadequate
user training. Maintenance programmer turnover, mainte-
nance programmer motivation, maintenance programmer
productivity, documentation quality, adequacy of system de-
sign specifications, unrealistic user expectations, and bud-

18 Journal of Information Technology Management, Volume VI, Number 3, 1995

APPLICATIONS SOFTWARE MAINTENANCE MANAGEMENT

TABLE 2
The Most Serious Maintenance Problems

Average

Problem Description Rating

Demand for enhancements 3.289

Competing demands for programmer time 3.173

Documentation quality 3.173

Unrealistic user expectations 2.808

Adequacy of system design specifications 2.769
Number of maintenance programmers

available 2.654
Meeting schedules commitments 2.647
Lack of user understanding 2615
Inadequate user training 2.596
Quality of original programming 2.577

getary pressure problems appear to have become more acute
over the years.

The ten most acute problems are listed in Table 2.
Number one and number four on this list pertain to user
demands and expectations. The MIS department is continu-
ously flooded by demands for enhancements to the current
system yet the users are very critical of lengthy, or even
normal, processing delays. The users want their changes
made quickly regardless of the priorities of other requests.
The “responsiveness” requirements have been further ac-
centuated with the advent of end-user computing and off-
the-shelf ready-to-use software. Nevertheless, such require-
ments pose heavy burdens on the MIS department.

Problems ranked number two, six, and seven are: com-
peting demands on programmer time, the availability of
maintenance programmers, and meeting scheduled commit-
ments, respectively. Maintenance has consistently demanded
a significant share of IS resources (most estimates put it
between 50% and 80%), yet maintenance programming is
generally regarded with lack of “glamour”, accorded a low
priority, and not viewed as one offering much advancement
potential [12,16]. New applications often take precedence
over maintenance, and the best programmers are assigned or
shifted to new development projects. It is justifiably arguable
that this “second-class” treatment has taken its toll on the
quality of maintenance.

Problems rated third, fifth, and tenth are related to the
quality of the original design of the system. They include
inadequate design specifications, the perennial problem of
documentation quality, and the quality of original program-
ming. Finally, many problems have to do with the lack of
user understanding of and training on the information systems.
Such unawareness can result in unrealistic demands and
unusual requests.

PROBLEM FACTORS

A factor analysis of the responses on the twenty six
problems was conducted in order to determine the underlying
problem dimensions and to facilitate subsequent contingency
analysis. Lientz and Swanson [9] also reported a factor
analysis where they identified six underlying dimensions.
However, there were potential problems in their analysis.'

!According to Lientz and Swanson, the six factors accounted for
100% of the variation. However, according to the reported
eigenvalues, the six factors account for only 47% of the variation.
Further, only the first three factors had eigenvalues greater than 1.
Typically, factors with eigenvalues greater than 1 are the only ones
retained.

TABLE 3
IS Problem Factors
Percent of Cumulative
Factor Eigenvalue Variance Percent
Programmer time availability 9.785 37.6 376
Programmer effectiveness 2330 9.0 46.6
Operations reliability 1.662 6.4 53.0
User knowledge 1.534 59 589
Product quality 1.369 53 64.1
Hardware/software limitations 1.304 5.0 69.2
User/management interest 1.139 44 73.5

Journal of Information Technology Management, Volume VI, Number 3, 1995 19

PALVIA, PATULA AND NOSEK

TABLE 4
The Rotated Factor Matrix

Programmer
Time Availability
Programmer
Effectiveness
Operating
Environment
User Knowledge
Product Quality
Hardware / Software
Limitations
User Training

Items / Factors

7. Number of maintenance
programmers available 8414

8. Competing demands for
programmer time 7547

1. Maintenance personnel turnover 6519
26. Turnover in user organization 6462

15. Forecasting maintenance :
programmer requirements 6316 4492

14. Maintenance programmer motivation 7840
5. Skills of maintenance programmers 7648
24. Meeting scheduled commitments 6925
16. Maintenance programming productivity 6832
10. System run failures » 7356
3. System hardware and software changes 6979
18. Data integrity .6406
17. Hardware and software reliability 5549 .5250
2. Documentation quality 4411 4212
19. Unrealistic user expectations 8068
25. Inadequate user training 7169 4176
11. Lack of user understanding 6670 4176
13. Program processing time requirements 4425
22. Adequacy of system design specifications 7342
4. Demands for enhancements 7179
6. Quality of original programming 4854 6833
20. Adherence to programming standards 4459 5916
12. Program storage requirements 7758
23. Budgetary pressures 7655
9. Lack of user interest 8710
21. Management support 645

20 Journal of Information Technology Management, Volume VI, Number 3, 1995

APPLICATIONS SOFTWARE MAINTENANCE MANAGEMENT

Our factor analysis is exploratory as the ratio of the
number of observations to the number of problem items is
only 2. The general recommendation for factor analysis is to
have four to five times as many observations as there are
items. However, in practice, as pointed out by Hair et al. [7],
several researchers have used factor analysis when this ratio
is about 2. Nonetheless, with a smaller sample and a lower
ratio, one has to be cautious in analysis and interpretation, as
well as use lower levels of significance to increase the power
of the tests [2].

Factor analysis was conducted using principal compo-
nents analysis as the extraction technique and varimax as the
method of rotation. Rotated factor loadings were examined
to identify the constituent items of each factor. Rotated
factor loadings of + .30 are considered significant, + .40
more significant, and + .50 very significant (Hair et al.
1984). In order to increase the power of the tests, we used
factor loadings of .50 to denote significance.

Seven factors emerged with eigenvalues greater than
one, and together explained 73.5% of the total variance
(Table 3). The rotated factor matrix is shown in Table 4
(factor loadings of less than .4 are excluded for presentation
clarity). The problem items are grouped under the seven
factors by their highest (primary) factor loadings. Very few
items had non-primary loadings, which attest to the aptness
of the seven-factor model. The items that are grouped under
each factor clearly point to the underlying factor domain; the
factor is labeled accordingly.

The first factor is labeled Programmer Time Avail-
ability. The items under this factor refer to maintenance
programmer shortage, their turnover, and increasing demands
on them. The second factor is Programmer Effectiveness; it
refers to programmer skills, effectiveness, and motivation.
The third factor is Operating Environment; included are
problems due to hardware and software reliability, system
failures, data integrity, documentation, etc. The fourth factor
is labeled as User Knowledge; it refers to problems caused
by user expectations, lack of user training, understanding,
etc. The fifth factor is Product Quality, and refers to the
quality of the original system. It includes items such as the
quality of original design specifications, quality of original
programming, and adherence to standards. The last two fac-
tors are not as pure as the first five factors; however, they
refer to Hardware/Software Limitations, and User/Man-
agement Interest.

For subsequent analysis, the seven problem factors were
operationalized as composite indices. A factor index was
computed for each survey response as a weighted sum of
problem items with factor coefficients greater than .5 (see
the factor matrix). These problem factors and other mainte-
nance issues are examined on a contingency basis in the next
section.

THE CONTINGENCY MODEL

The fundamental impetus behind the formulation of a
contingency model is the determination of the impact of
scale of effort factors such as system size, age and system
complexity upon various maintenance types, problems, and
issues. Three types of software maintenance are considered:
corrective, adaptive, and perfective maintenance [9]. Cor-
rective maintenance comprises of emergency program fixes
and routine debugging; adaptive maintenance is making
changes in response to technology changes (e.g., /O changes,
and hardware and systems software changes); and perfective
maintenance includes user requested enhancements, improved
documentation, and recoding for efficiency.

Systems concepts and S-curve model of technology were
used to generate an initial model of contingency relation-
ships. Specifically, systems theory can be used to make
predictions relating scale of effort factors — the size, age and
complexity of the system — to the various dependent vari-
ables in maintenance. The S-curve model of technology
adoption life cycle can be used to relate the type of mainte-
nance methods used to the age of the system.

From systems theory, as a system ages it becomes more
disordered [4]. Negative entropy, which can be altemnately
referred to as maintenance, must be applied to the system or
it will degrade and fail. It is, therefore, implied that an
application system will need increasing amounts of corrective
maintenance as the system ages.

Systems which are larger or more complex have a greater
chance of malfunctioning since there are more connections
and interactions between system components. Large and
complex systems should use more corrective maintenance
[1]. Also larger systems tend to model complex, and dynamic
environments. These systems will use adaptive maintenance
which enables the system to adjust to the new technological
environment allowing it to survive.

The S-curve is a model of organizational growth. It can
be applied to show information systems (IS) growth, maturity,
and decline [4,13]. In fact, Nolan’s stage model of IS growth
[13] can essentially be considered an application of the S-
curve model. The diagram in Figure 1 describes the IS
lifecycle. Each stage of the model has certain characteristic
problems associated with it.

The S-curve model predicts that an IS in the maturity
stage will use formal controls [13] in application development
and maintenance, such as formal reviews and chargebacks.
In the maturity stage, an organization becomes concerned
with recovering the costs of IS; as such cost benefit analysis
may more often be used as a form of maintenance control.
Further, an IS in the maturity stage will employ perfective
maintenance more as it attempts to obtain greater value from
its existing systems.

Journal of Information Technology Management, Volume VI, Number 3, 1995 21

PALVIA, PATULA AND NOSEK

FIGURE 1
S-curve Model of IS Growth

System
Size

|

/_—\

Introduction

Growth

Maturity = Decline

In the growth stage, there is a natural focus on expansion
without attention to controls [13]. In this stage there will be
more problems; consequently, maintenance effort will be of
the corrective type. Systems in the growth stage should,
therefore, be correlated with greater problems in programmer
time availability, product quality, and user knowledge.

Based on the above comments from the literature, a
contingency model is offered. This model (Table 5) relates
organizational and system factors to the dependent mainte-
nance factors. The independent variables are grouped into
these factors: system age, system size, database size, IS staff
size, type of IS, maintenance effort, and development expe-
rience. The dependent variables are: maintenance controls,
maintenance problems and effort on different types of
maintenance.

Many of these factors and their levels are self-explana-
tory. Their meanings are further explicated in Table 5. Among
the independent variables, the type of information system
refers to two broad categories: transaction processing/office
automation, and decision support systems/executive systems/
strategic systems. Among the dependent variables, the prob-
lem types refers to the seven problem factors extracted dur-
ing factor analysis. Another dependent variable is the type of
controls used in maintenance. The study examined several
maintenance controls. These individual controls are grouped
logically into five types of controls, as listed below.

Trouble/user request logs = {Log user requests

+ Trouble log
+ Change log}
Chargebacks = {Chargeback equipment costs
+ Chargeback personnel costs}
Cost/benefit analysis = {Cost justify user requests}
Batch maintenance implementation
Formal audits and
testing procedures = {Formal test of changes
+ Formal system audit}

RELATIONSHIPS AND HYPOTHESES

Based on the contingency model and the above discus-
sion, the following relationships and hypotheses are formu-
lated. For space reasons, only representative hypotheses are
being presented; more hypotheses can be generated by fur-
ther examination of literature and experience. The discussion
and the hypotheses are grouped by the independent variables.

System age

According to S-curve and system theory, system age
should be correlated with the use of corrective maintenance.
Older systems which are entering the growth phase of S-
curve should have more problems with lack of user knowl-

22 Journal of Information Technology Management, Volume VI, Number 3, 1995

APPLICATIONS SOFTWARE MAINTENANCE MANAGEMENT

TABLE §

Maintenance Contingency Model

Independent Variables Dependent Variables
System Age Maintenance Controls
Complaint / Trouble logs
System Size —> Chargebacks
Number of system applications Cost Benefit Analysis
Number of application source lines Batch Maintenance Implementation
Formal Audit of System
Database Size
Number of data files Problem Types
Number of characters Programmer Time Availability
Programmer Effectiveness
IS Staff Size _ Operations Reliability
User Knowledge
Application Development Staff Size Product Quality
Hardware/Software Limitations
Type of IS (TP / OA /DSS / SIS) User Training
Relative Maintenance Effort Type of Maintenance
Corrective Maintenance
Development Experience of —> Adaptive Maintenance
Maintenance Staff Perfective Maintenance
edge, product quality, and programmer time. The oldest ging procedures (H9).
systems may have problems with hardware and software
limitations, but fewer problems with product quality and System size

programmer effectiveness. Accordingly, the following hy-
potheses are being evaluated. (Note that, in our study, System
age is measured in months and should be an indicator of the
S-curve stage of the system).

H1: System Age is positively correlated with corrective
maintenance.

H2: System Age is positively correlated with user knowl-
edge problems.

H3: System Age is positively correlated with product quality
problems.

H4: System Age is positively correlated with programmer
time availability problems.

H5: System Age is positively correlated with hardware/
software limitation problems.

H6: System Age is positively correlated with programmer
effectiveness problems.

H7,8,9: System Age is positively correlated with the use of
cost benefit analysis (H7), chargebacks (H8), and log-

System size is measured by the number of program
modules and the number of source statements contained in
the system. Larger systems are more complex and harder to
maintain. Size should be positively correlated with corrective
maintenance. Also larger systems will be more sensitive to
hardware and software limitations. Accordingly, we have:

H10: System Size is positively correlated with corrective
maintenance.

H11: System Size is positively correlated with product qual-
ity problems.

H12: System Size is positively correlated with user knowl-
edge problems. '

H13: System Size is positively correlated with hardware/
software limitation problems.

H14,15,16: System Size is positively correlated with the
use of formal maintenance control procedures like cost
benefit analysis (H14), chargebacks (H15), and log-
ging procedures (H16).

Journal of Information Technology Management, Volume VI, Number 3, 1995

23

PALVIA, PATULA AND NOSEK

Database size

Database size is measured by the number of data files
and the number of characters in the database. A larger data-
base would seem to require greater changes in data inputs
and files, as well as more frequent need for upgrades in
hardware and system software. Additionally, the users are
likely to be less knowledgeable/trained about the contents
and use of a larger database. Thus, we have the following
hypotheses:

H17: Database Size is positively correlated with adaptive
maintenance.

H18: Database Size is positively correlated with user knowl-
edge problems.

Size of staff

The number of people in the application development
staff and the maintenance staff are described by this factor.
While larger system staffs represent greater organizational
resource allocation, they also represent larger and more
complex systems. Therefore, many of the hypotheses pro-
posed for system size should also be applicable for IS staff
size. Thus we anticipate that for larger systems, there would
be more problems with lack of user knowledge. However,
larger staffs would be able to maintain higher product qual-
ity, and there will be fewer product quality problems. Con-
sequently, it should result in less corrective maintenance. On
the other hand, organizations with larger staff will attempt to
recover or limit the costs of their staff with some formal
process.

H19: Staff Size is negatively correlated with corrective
maintenance.

H20: Staff Size is negatively correlated with product quality
problems.

H21: Staff Size is positively correlated with user knowledge
problems.

H22,23: Staff Size is positively correlated with the use for-
mal maintenance control procedures like cost benefit
analysis (H22) and chargebacks (H23).

Types of applications

Does the IS support transaction processing and office
automation or does it also have features of management
support systems? Examples of management support systems
include decision support systems (DSS), and strategic/ex-
ecutive information systems (SIS). Management support
systems have constantly changing requirements; as such they
will generally require more perfective maintenance. Another
argument for more perfective maintenance is from the point
of view of the organization being in a maturity stage if it is
using management support systems. Also, many times such

systems require special hardware and software (e.g., work-
station technology, graphical user interfaces, non-keyboard
technology, etc.). As such, there are likely to be more prob-
lems with hardware and software limitations. Additionally,
management support systems are primarily designed for and
used by end users and managers who are generally not
trained in the use of computers. Therefore, the problems of
user training are likely to be heightened.

H24: SIS and DSS are positively correlated with perfective
maintenance.

H25: SIS and DSS are positively correlated with user train-
ing problems.

H26: SIS and DSS are positively correlated with hardware
and software limitations.

Percent of maintenance budget to overall IS budget

This factor is a measure of the relative importance of
maintenance as reflected in the budget. Systems with more
resources devoted to maintenance should have fewer prob-
lems.

H27: The percent of IS budget devoted to maintenance is
negatively related to product quality problems.

Development Experience of the Maintenance Staff

If the maintenance staff has greater experience with
system development, it is to be expected that there would be
fewer problems with programmer productivity and product
quality. Accordingly, we have the following hypotheses:

H28: Development experience of maintenance staff is
negatively related to product quality problems.

H29: Development experience of maintenance staff is
negatively related to programmer effectiveness prob-
lems.

H30: Development experience of maintenance staff is
negatively related to programmer time availability
problems.

CONTINGENCY RESULTS

While the hypotheses were natural to formulate based
on the independent variables, it is more reflective to examine
the results by each dependent variable (i.e., problem types,
maintenance controls, and maintenance types). Accordingly,
the hypotheses are regrouped and summarized in Table 6.

Each of the hypothesized relationship was examined by
computing the Pearson’s correlation coefficient. The hy-
potheses that are supported are included in the following
discussion. While not all postulated hypotheses are supported,
many are, pointing to the initial aptness of the contingency
model. Future efforts should be carefully designed to further
refine the contingency model.

24 Journal of Information Technology Management, Volume VI, Number 3, 1995

APPLICATIONS SOFTWARE MAINTENANCE MANAGEMENT

TABLE 6

Summary of Hypothesized Correlations
(Note: All correlations are positive unless otherwise indicated.)

Problem Type Determinants

H2: User Knowledge & System Age

H12: User Knowledge & System Size

H18: User Knowledge & Database Size

H21: User Knowledge & Staff Size

H3: Product Quality & System Age

H11: Product Quality & System Size

H20: Product Quality & Staff Size (negative corr.)

H27: Product Quality & Percent Maintenance Budget
(negative corr.)

H28: Product Quality & Maintenance Development
Experience (negative corr.)

H5: Hardware/Software Limitations & System Age

H13: Hardware/Software Limitations & System Size

H26: Hardware/Software Limitations & DSS/SIS

H6: Programmer Effectiveness & System Age

H29: Programmer Effectiveness & Maintenance
Development Experience (negative corr.)

H25: User Training & DSS/SIS

Maintenance Control Determinants

H7: Cost Benefit Analysis & System Age

H14: Cost Benefit Analysis & System Size

H22: Cost Benefit Analysis & Staff Size

H8: Chargebacks & System Age

H15: Chargebacks & System Size

H23: Chargebacks & Staff Size

H9: Logs & System Age

H16: Logs & System Size

Maintenance Type Determinants

H1: Corrective Maintenance & System Age

H10: Corrective Maintenance & System Size

H17: Adaptive Maintenance & Database Size

H19: Corrective Maintenance & Staff Size (negative
corT.)

H24: Perfective Maintenance & DSS/SIS

Problem Type Determinants

System size was positively related to user knowledge
problems (H12: p=.067). Other system size and age correla-
tions were not notable. Among the individual components of
the “user knowledge” factor, the “user training” component
had a positive correlation with system size (p=.075) and is
noteworthy. Although this was not included separately as
one of the hypotheses, a plausible explanation is that large
systems are unduly complex and the perceived amount of

training on them is less than adequate.

Contrary to our hypothesis, the maintenance staff size
and application development staff size are positively related
to problems with product quality (H20: p=.03) and (H20:
p=.031). The rationale for this finding may be that larger
staffs work on larger and more complex systems. Larger
systems are harder to maintain resulting in product quality
problems. Thus, it seems that staff size is not an independent
variable but an intermediate variable that is affected by
system size and complexity.

The percentage of DP budget devoted to maintenance is
negatively related to product quality problems (H27: p=.031).
This is an expected result; a greater proportion of resources
spent on maintenance should ease quality related problems.
Furthermore, the development experience of maintenance
personnel is negatively related to problems with programmer
availability and programmer effectiveness (H30: p=.011)
and (H29: p=.029). Again, these arc results that confirm
expectations.

The supported relationships from the above analysis are
summarized in Figure 2. Several recommendations are of-
fered in the concluding section based on these relationships.

Maintenance control determinants

Most of the relationships identified by correlation analy-
sis support the hypotheses that were postulated. Generally,
larger systems correlated with higher use of maintenance
controls. For example, there was greater use of trouble/user
request logs in larger systems (H14: p=.000), and also of
chargebacks (H15: p=.093). There was no statistically sig-
nificant support for the use of cost-benefit analysis.

Another notable result is the positive correlation between
system age and the use of chargebacks (H8: p=.062). Ap-
parently, after the system has undergone a shakeout period,
users are being increasingly charged back for maintenance
services.

Two other interesting results that were not part of the
hypotheses are: first, larger systems, as part of a control
mechanism, tend to use more often the batching of mainte-
nance changes to application programs (p = .096), and second,
systems with DSS and strategic capabilities tend to use more
of chargebacks (p = .002). The use of chargebacks for DSS/
SIS type systems is justified as according to the S-curve
model, such systems are probably in the maturity stage of IS
growth in an organization, and also because such systems
may not have explicit or tangible payoffs to the organization

Maintenance Effort Distribution

Once again, the findings are supportive of the hypoth-
eses. Larger systems are positively correlated with corrective
maintenance (H1: p= .088). This is in correspondence with
systems theory which predicts that as a system grows larger,

Journal of Information Technology Management, Volume VI, Number 3, 1995 25

PALVIA, PATULA AND NOSEK

FIGURE 2
Ractors Related to Problems of Maintenance

+
System Size User Knowledge
]
i
)
I+
I
(
1
Product Quality
Relative
Maintenance
Budget
Programmer
- Time
Development Avallability
Experience _
Programmer
Effectlveness

it should have more errors and corrective maintenance should
increase. Systems with larger databases are positively corre-
lated with adaptive maintenance (H17: p=.001). Larger da-
tabases may necessitate a greater amount of change in data
inputs and files, as well as a greater need for hardware and
software upgrades. Conversely, hardware and software
changes that are made to take advantage of technological
advances will impact the reorganization of larger databases
more.

MANAGERIAL IMPLICATIONS AND
RECOMMENDATIONS

As the study points out, despite of rapid technological
advances in the software industry, problems continue to

persist in application software maintenance. These problems
seem to be rooted in policy and practices related to mainte-
nance management. The following managerial recommen-
dations, based on our analysis of the problems (see Tables 2
and 3 and Figure 2) and review of the literature, are offered
as a way to alleviate the problems.

1. There scems to be a general agreement in much of
the literature cited earlier that maintenance is accorded a
secondary status compared to new development. It is our
contention as well as of many others [9,11,12,15,16] that the
lower significance attached to the maintenance function is
one of the underlying reasons for the ensuing problems
reported in the article. If nothing else, the simple economics
of the maintenance function should force management to
change this erroneous perspective. We urge a fundamental

26

Journal of Information Technology Management, Volume VI, Number 3, 1995

APPLICATIONS SOFTWARE MAINTENANCE MANAGEMENT

shift in management’s view of application software mainte-
nance. Of course, this is easier said than done. Specific
recommendations made below should help implement the
new perspective.

2. Currently, most firms organize the maintenance
function in a manner subservient to new development. That
must change, and maintenance should be organized so that it
has a status equal to new development. Some suggestions in
this regard include: a. organize the IS function into “Installed
Systems”, which include corrective work as well as en-
hancements, and “Future Systems”, which is new application
development [16]; and b. take an integrated view of mainte-
nance and new development, so that there is a seamless split
(or no split at all) between development and refinement [15].

3. Refine the maintenance organization itself [12]. Key
measures include: improving working conditions, offering
career paths, and hiring and retaining talented and experienced
employees in the maintenance department. Note that our
study found that the lack of experience of maintenance staff
exacerbated the problems of programmer effectiveness and
availability. Other measures include providing more budget
to maintenance (our study found that the relative maintenance
budget had a significant relationship with product quality),
instituting robust change management procedures [3], and
developing measurement metrics and data [11,14].

4. Many problems related to “user knowledge” appear
in the top ten list of problems, and include unrealistic user
expectations, demand for enhancements, and lack of user
training and understanding. Several steps can be taken to
address the user knowledge category. It has been said that
the maintenance group suffers from a lack of human relations
management [8], and more effort should be made to achieve
better communication among all concerned parties, i.e., users,
managers, analysts, and programmers. A greater and effective
level of communication will sensitize both users and pro-
grammers to the needs and constraints of each other. On the
training issue, training is usually confined to new application
systems; it should be extended to existing systems, on a
periodic basis. As our study points out, training problems are
more serious for larger systems; therefore, larger systems are
prime candidates for user training. A partial solution to the
unsatiable user demands for enhancements and new appli-
cations is user developed systems. The IS group can play a
key role in improving the quality of user developed systems
by providing the necessary support.

5. The maintenance activities are heavily influenced
by the quality of the original design and programming [1,11].
Planning for maintenance should begin during development
[5], and should include such elements as: adherence to stan-
dards, documentation, quality specifications, and sound design
and programming practices based on structured principles

[8].

6. New application development groups are increas-
ingly embracing new and automated tools to boost produc-
tivity and quality; maintenance groups should do the same.
Tools that support software maintenance are now available
and fall into three categories: reverse engineering, software
engineering, and software restructuring [3]. The use of soft-
ware tools and CASE platforms that incorporate maintenance
tools and software reengineering techniques has been advo-
cated in the literature [6,12].

7. Finally, the educational system must bear some
responsibility for the maintenance problems in organizations.
Typically, new programmers and analysts graduating out of
college, are trained only in new application development,
and get only a cursory review of maintenance tasks [6].
Clearly, the MIS programs at colleges and universities need
to examine their content and provide greater emphasis on the
maintenance function.

CONCLUSIONS

In this article, we have provided a fresh perspective on
the state of software maintenance. The previous comprehen-
sive report was made by Lientz and Swanson [9,10] over a
decade ago; essentially the same instrument that was used by
them was used in this study to gather information about
current maintenance issues and problems. In addition, a
contingency analysis was made to explore some of the un-
derlying reasons behind the various maintenance issues. It is
disheartening to note that, in spite of technological advances,
problems continue to plague maintenance activities and their
management. Maintenance is fraught with many of the same
problems as a decade ago, and the magnitude of the problems
have in no manner diminished. The problems are exacerbated
by the prevailing notion that new system development should
command greater attention from management and the tech-
nical staff.

Given the vast amount of resources spent on maintenance,
it is imperative from a sheer economic point of view to focus
more attention on addressing the problems of maintenance.
This article has highlighted the current problems in mainte-
nance and categorized them into seven categories. Factors
that contribute to the problems have also been identified.
Many of the problems are non-technical in nature, and pri-
marily require greater management attention. More than a lip
service, these constantly haunting problems call for a major
realignment of the management perspective on maintenance.
Several practical suggestions have been offered to develop
this new perspective.

REFERENCES

1. Bankar, R.D., Datar, S.M., and Kemerer, C.F. “A model
to evaluate the productivity of software maintenance

Journal of Information Technology Management, Volume VI, Number 3, 1995 27

PALVIA, PATULA AND NOSEK

10.

11.

12.

13.

14.

projects,” Management Science, Vol 37, No 1, January
1991, pp. 1-18.

Baroudi, J.J., and Orlikowski, W.J. “The problem of
statistical power in MIS research,” MIS Quarterly, 1989,
Vol 13, No 1, pp. 87-106.

Burch, J.G., and Grupe, F.H. “Improved software main-
tenance management,” Information Systems Manage-
ment, Vol 10, No 1, Winter 1993, pp. 24-32.

Davis G. B. and Olson, M. H. (1985). Management In-
SJormation Systems (2nd ed.). New York: McGraw-Hill.
Edelstein, D.V., and Mamone, S. “A standard for soft-
ware maintenance: A framework for managing and ex-
ecuting software maintenance activities,” Computer, Vol
25, No 6, June 1992, p. 82(2).

Friedlander, P., and Toothman, W.E. “Reengineering
done right: Intermediate solutions that are costeffective,”
Information Systems Management, Vol 11,No 1, Winter
1994, pp. 7-15.

Hair, J.F. Jr., Anderson, R.E., Tatham, R.L., and
Grablowsky, B.J. Multivariate Data Analysis. MacMillan
Publishing Co. New York, 1984.

Kim, C., and Westin, S. “Software maintainability: Per-
ceptions of EDP professionals,” MIS Quarterly, June
1988, pp. 167-179.

Lientz, B.P. and Swanson, B.E. “Problems in applica-
tion software maintenance,” Communications of the
ACM, Vol 24, No 11, November 1981, pp. 763-769.
Lientz, B.P., and Swanson, E.B. Software Maintenance
Management. Addison-Wesley, Reading, MA. 1980.
Lientz, B.P., Swanson, B.E. and Tompkins, G.E.
“Characteristics of application software maintenance,”
Communications of the ACM, Vol 21, No 6, pp. 466-
471.

Moad, J. “Maintaining the competitive edge,”
Datamation, Vol 36, No 4, Feb 15, 1990, pp. 61-66.
Nolan, R. L. “Managing the crisis in data processing,”
Harvard Business Review. March-April 1979.
Paddock, C.E. and Shephard, G.G. “Managing software
maintenance: The challenge of insufficient data,” Jour-
nal of Systems Management, Vol 42, No 10, Oct 1991,
pp. 28-31,36.

15. Poo, Danny C.C. and Layzell, P.J. “An evolutionary
structural model for software maintenance,” Journal of
Systems & Software, Vol 18, No 2, May 1992, pp. 113-
123,

16. Swanson, E.B. and Beath, C.M. “Reconstructing the
systems development organization,” MIS Quarterly,
September 1989, pp. 293-304.

ABOUT THE AUTHORS

Prashant Palvia is Professor of Management Informa-
tion Systems at the University of Memphis. He received his
Ph.D. from the University of Minnesota. He is the Editor-in-
Chief of the Journal of Global Information Management. He
was the conference chair of the 1991 International Confer-
ence of the Information Resources Management Association.
His research interests include international information sys-
tems, strategic information systems, database design, and
software development. He has published extensively, includ-
ing in MIS Quarterly, Decision Sciences, ACM Transactions
on Database Systems, Information and Management, and
Information Systems.

Aaron Patula is Assistant Professor of Management
Information Systems at the University of Minnesota, Duluth.
His research interests are user centered design methodolo-
gies and case-based reasoning. He completed his Ph.D. in
MIS with a minor in Cognitive Science from Memphis State
University (now, The University of Memphis) in May 1994.
The dissertation investigated case-based decision support
for commodities trading.

John Nosek is Associate Professor of Computer and
Information Sciences at Temple University. He continues to
focus on the problem of obtaining greater organizational
value from information technology (IT). This has led him to
work on ways to align IT and organizational goals, and
measuring and modifying the perceived strategic value of
information systems. He has published in such journals as
Communications of the ACM, Information and Manage-
ment, and International Journal of Man-Machine Studies.

28

Journal of Information Technology Management, Volume VI, Number 3, 1995

