SOFTWARE PROCESS IMPROVEMENT DEPLOYMENT: AN EMPIRICAL PERSPECTIVE

SOFTWARE PROCESS IMPROVEMENT DEPLOYMENT:
AN EMPIRICAL PERSPECTIVE

JEAN-PIERRE KUILBOER

UNIVERSITY OF MASSACHUSETTS

NOUSHIN ASHRAFI

UNIVERSITY OF MASSACHUSETTS

ABSTRACT

Some experts in software development look upon Software Process Improvement (SPI) as the key to
product quality at a reduced cost. Practitioners, on the other hand, have been slow in adopting SPI, and
would argue that SPI methodologies are expensive, time consuming, and have little impact on software
quality. The literature is full of anecdotal evidence supporting or opposing the benefits of SPI
methodologies; yet, there is little empirical data to validate or contradict them. Whether it is the image
created by complying with established guidelines or actual quality improvement that gains customer
satisfaction and trust is to be determined. We conducted a survey in the New England region to get a
perspective on these issues from practitioners in the field. Altogether, 67 responses were collected, which
included developers who use some sort of SPI methodology, and those who do not. The purpose of this
paper is to get an empirical perspective on the deployment of SPI techniques and their impact on product
quality and productivity. Our survey was designed for software developers, and its questions may help us
identify factors that influence the adoption of a software process improvement technique. According to the
majority of our respondents, while using SPI does not necessarily lead to a quality software product at a

reduced cost or delivery time, it creates a perception of quality leading to customer satisfaction.

INTRODUCTION

The ultimate goal of software development is to
improve customer satisfaction by delivering high-quality
software in a timely manner. Achieving this goal, however,
has proved to be a difficult and frustrating endeavor. Recent
studies show that most software products are of poor
quality, often late, and frequently exceed budget costs. In
the last two decades, many tools and techniques for software
improvement, such as CASE tools, 4GL, structured
techniques, rapid prototyping, and software reengineering,
have been introduced. Each has gone through its period of
glory and been considered the answer to the software
development crisis, but then has failed to deliver what was
expected. One by one, each effort has lost momentum.

Over time, focus has shifted between improving
the end product and process improvement. During the

late 1970’s and through the early 1980’s, defining and
improving software quality was the major challenge.
Starting late in the 1980’s and continuing through the
1990’s, process improvement became the focus of
attention, with the supporting argument that, “the quality
of a software system is governed by the quality of the
process used to develop it.” Current efforts, however, are
returning to an emphasis on quality in terms of the
functional usefulness of the final product.

A look at the definition of the software process,
Software Process Improvement (SPI), and some SPI
initiatives that have been most commonly used, will help
us obtain a greater understanding of the arguments for and
against SPI methodologies.

The software development ‘process’ could be
defined as all activities performed to develop or maintain
a software product. Software Process Improvement is

Journal of Information Technology Management, Volume X, Numbers 3-4,1999

35

KUILBOER AND ASHRAFI

about introducing changes to the software development
process with the purpose of meeting a set of criteria,
which promote process performance within quality, cost,
and schedule targets. There are a number of process
improvement initiatives, of which the most commonly
used are the Software Engineering Institute’s Capability
Maturity Model (CMM), and the International
Organization for Standardization’s ISO-9000. These
practices provide a set of guidelines for the planning,
managing, tracking, and oversight of software
development and maintenance.

CMM and ISO Guidelines

The concept of statistical repeatability,
established by W.E. Deming and J.M. Juran, inspired the
Capability Maturity Model. CMM divides software
process improvement into five levels, in which each level
represents a degree of maturity that the software
developing organization plans to achieve. To give more
guidelines and directions to software process
improvement, CMM offers fifteen activities that
correspond to the course of actions that need to be taken
in order to achieve different levels of maturity. These
fifteen activities are clustered into four categories.

The first category, organization, addresses issues
manifested through policies, resource allocation,
management supervision, overall human resources
training, and specified responsibilities. Next, project
management, covers the traditional planning, tracking,
control, and subcontracting. Process management, the
third category, aims at improving organizational maturity,
and establishing the infrastructure. Process management
encompasses the steps from process definition, through
execution, control, and feedback. Technology constitutes
the fourth category, and concerns the use of technology
and an environment facilitated by appropriate tools. At
each level of the maturity model, the organization
following the CMM path will add layers of expected
actions and tasks to the respective categories.

While CMM was intended for software from the
start, the ISO 9000 series has a long history predating
CMM, and is rooted in a more general environment.
Applied to the software development process since 1991,
the ISO-9000-3 standard still contains a language not
familiar to the domain of software development. ISO-
9000-3 addresses process consistency and control, and has
little to say about the quality of the final products,
customer satisfaction, business operating results, or bench
marking. Additionally, ISO-9000 has no step-wise
progression toward certification. While the standard
assumes continuous improvement after certification, the

certification could be perceived as the destination of the
Jjourney.

CMM has become the leading source in the US
software industry, while globally, ISO-9000 is considered
the recognized set of standards for software development.
Sletzer et al. consider the ISO 9000 family as one of the
most important standards in the field of software quality
management in Europe.

Both CMM and ISO 9000 have their advocates
and opponents. For example, Mark Schaeffer contends
that “CMM has contributed to widespread success in
assisting organizations to improve their efficiency in
developing quality software product.” Likewise, Gardner
(asserts that the intent of the ISO 9000 series
requirements is that a basic system be implemented to
ensure customers that suppliers have the capabilities and
systems to provide quality products and/or services. He
adds that “The ISO 9000 series concentrate almost
exclusively on results criteria...” Despite these sentiments
regarding both models, practitioners have been slow to
embrace SPI practices. Ritta Hadden notes that, “Many
developers frequently do not see the benefits of managing
requirements, nor do they feel the need to take time for
project planning, tracking, and oversight, as advocated by
the CMM.” Pressman states that, “practitioners often
perceive a disciplined process as a bottleneck to rapid
progress. Many secretly view quality assurance activities
as time-consuming, rather than time saving.”

Sweeney and Bustard argue that the difficulty
with both of these models is that they imply large
incremental changes. With ISO requirements, a single
level of attainment is defined, which can be achieved
through substantial efforts and significant changes to
existing working practices. With CMM, multiple levels of
attainment have been defined, but again each step poses a
major challenge and becomes progressively more difficult
at higher levels.

In 1993, Johnson and Brodman embarked on a
six months study of 35 organizations from government
and industry. They reported that “most study participants
who are seriously committed to software improvement
realized at least some schedule, cost, and/or quality
improvement.” Since this study, there has been very little
empirical data to provide some insight of how
practitioners evaluate SPI initiatives and there has been no
information to indicate a viable link between SPI and
software product quality.

The major dispute facing the advocates of
Software Process Improvement is whether there is enough
evidence to show that SPI does indeed improve the
quality of the final product and customer satisfaction.
Also, there are conflicting opinions about whether SPI

36 Journal of Information Technology Management, Volume X, Numbers 3-4,1999

SOFTWARE PROCESS IMPROVEMENT DEPLOYMENT: AN EMPIRICAL PERSPECTIVE

methodologies are only appropriate for large software
projects; success stories are based on large companies,
which have sufficient resources to accommodate SPI
requirements. The reality of the 21st century is that there
are many small companies developing small-to medium-
size products, which, either as a stand-alone product or
embedded in a larger system, are as important as their
larger counterparts.

The purpose of this paper is to get an empirical
perspective on the deployment of SPI techniques and their
impact on product quality and productivity. We compared
and contrasted responses of SPI users and non-users to
identify those factors that could possibly influence the
adoption of a software process improvement technique.
The following section describes our survey, and in section
three we present the results and analyze them in the
context of the management of information technology.
Section four offers a conclusion and a summary of our
findings.

THE SURVEY

We chose four professional organizations in New
England and distributed our survey to the members of
these four organizations: Software Process Improvement
Network (SPIN), the Association of Computing
Machinery (ACM) Boston Chapter, the American Society
for Quality (ASQ) of Massachusetts, and the New
England Software Quality Assurance Forum (NESQAF).
As members of these organizations, we had been
regularly attending their monthly meetings. During the
fall and spring of 1998, we contacted the chairpersons of
these organizations, discussed the nature of the study, and
received permission to conduct our survey. The method of
data gathering was that of a semi-structured interview:
we handed out the questionnaires to software developers
and answered their questions as they were raised. Those
members who were not part of a developing team did not
participate, and although some developers worked for the
same organization, almost all worked on different
projects. Since we were only interested in the software
developers’ view of the product development process, we

did not ask questions regarding organization type, size, or
management. Our findings and analysis are based on the
sixty-seven responses we collected.

The first part of the questionnaire was designed
to identify the users and non-users of SPI methodologies,
and to get a sense of the size and the type of software
projects developed using SPI techniques. In our survey,
we asked the respondents whether their organizations
deployed 1SO-9000, CMM (SEI), an in-house .
methodology, or no methodology at all. We also asked
them to identify the business mode of their software
development projects. The choices included in-house
software development, contract for specific customer,
retail for general purposes, and/or shrink-wrap. To
determine the size of software developing projects, we
asked for the size of developing team, and the range of
time between the start and finish (first shipment) of the
software development project.

In the second part of the survey, we asked
questions pertaining to the impact of SPI methodologies on
cost, schedule, and quality. We asked whether using an SPI
methodology had significantly increased or decreased the
actual cost versus scheduled cost. We also inquired about
whether using SPI had significantly increased or decreased
the actual delivery date versus the scheduled date. Questions
regarding quality were in two parts: first, the impact of SPI
on customer satisfaction; second, the impact of SPI on the
quality of the product. While those who were using SPI
could report on these aspects based on their experience,
others could only express their opinion based on their
expectation and what they perceived the impact would be.

The quality of a software product depends on good
design, assuring the software product’s correctness,
maintainability, and verifiability. Another aspect of quality
is performance, which depends on the software product’s
efficiency, integrity, reliability, usability, and. testability.
Finally, a high quality software product should conform to
factors affecting its adaptation. These factors are
expandability, flexibility, portability, reusability,
interoperability, and intra-operability. We adopted the
traditional definitions for these quality factors, which is
presented in the table below.

Journal of Information Technology Management, Volume X, Numbers 3-4,1999 37

KUILBOER AND ASHRAFI

Table 1

Software Quality Factors
Quality of Design
Correctness.
Extent to which the software conforms to its specifications and conforms to its declared objectives.
Maintainability. '
Ease of effort for locating and fixing a software failure within a specified time period.
Verifiability.

Ease of effort to verify software features and performance based on its stated objectives.

Quality of Performance

Efficiency.
Extent to which the software is able to do more with less system resources (hardware, operating system,
communications, etc.). ‘

Integrity.
Extent to which the software is able to withstand intrusion by unauthorized users or software within a
specified time period.

Reliability.
Extent to which the software will perform (according to its stated objectives) within a specified time
period.

Usability.
Relative ease of learning and the operation of the software.

Testability.
Ease of testing the program to verify that it performs a specified function.

Quality of Adaptation

Expandability.
Relative effort required to expand software capabilities and/or performance by enhancing current
functions or by adding new functionality. :

Flexibility.
Ease of effort for changing the software’s mission, functions or data to meet changing needs and
requirements. "

Portability.
Ease of effort to transport software to another environment and/or platform.

Reusability.
Ease of effort to use the software (or its components) in other software systems and applications.

Interoperability.
Relative effort needed to couple the software on one platform to another product and/or another platform.

Intra-operability.
Effort required for communications between components in the same software system.

Source: (11) The Handbook of Software Quality Assurance, Prentice Hall, 1998.

38 Journal of Information TechnologyManagement, Volume X, Numbers 3-4,1999

SOFTWARE PROCESS IMPROVEMENT DEPLOYMENT: AN EMPIRICAL PERSPECTIVE

In the third part of the survey, we asked questions
regarding the importance of quality factors to software
developers. We asked the respondents to rank the impact of
the software process improvement methodologies on their
development projects, and the importance of the quality
factor for their product and/or their enterprise. The ranking
was from very low, low, average, high, to very high. We
wanted to examine whether the importance of software
quality factors could be a possible determinant for the
deployment of software improvement methodologies.

THE RESULTS

In what follows, we summarize our findings and
analyze how they contribute to long-term managerial
knowledge. To that end, we separate projects that were
developed using an SPI methodology from those that were
not, and compare them by their type and size to determine
whether type and size were among the factors influencing
the use of SPI methodologies. Table 1 depicts the
percentage of software projects that have been developed
using a SPI Methodology.

Table 1
150 CMM Other
SPI 28% 21% 22%
Non-SPI 40%

Note: 12% of organizations use both ISO and CMM.

Our survey revealed that 60% of interviewed
companies use some SPI methodology, while 40% replied
“none” to the question of which SPI methodologies are
used by their organizations. Considering that adopting
such methodologies is voluntary, one may assume that the
60% of those organizations employing them do so
because they expect some quality improvements and/or
cost reductions. Our findings do not support such
assumption; rather, it appears that the appeal of SPI is
based on the perception of quality it creates in the mind of
the customer. Thus, the type of the project and its
potential users may have an impact on the deployment of
SPL

Project Type: The project type may have some
ramifications on the managerial decision made regarding
the adoption of a SPI methodology. Table 2 summarizes
our findings in this respect.

Table 2
% of type of software projects

In-house Contact | General/retail | Shrink Wrap
SPI 50% 60% 20% 15%
Non-SPI
Note: some companies develop two or three types of software

The most noteworthy finding regarding the type of
projects developed using SPI was that almost two-thirds of
them were developed on a contractual basis, whereas only
one-third of the projects that did not use SPI were
contractual. This makes sense because the ISO in particular
is based upon the use of a contractual agreement, and one of
the criteria, which determine whether suppliers get a
contract, is their ability to deliver quality software.
Therefore, it is imperative that suppliers have a system in
place to demonstrate that they take serious measures for
delivering quality products.

The percentage of software products developed for
internal use, general retail, or shrink-wrap did not deviate
considerably between SPI and non-SPI users. In the
managerial context, these findings imply that the adoption
of an SPI methodology can be used as a certificate for
quality performance, and perhaps as the most important
consideration for selecting software development
outsourcing. While meeting standards is crucial for
contractual software products, in-house software projects
are only scrutinized by internal customers, and the image of
using SPI does not add any aura. Retail software products,
on the other hand, are often evaluated by the practitioner
press in term of functionality, added value, and reliability.
These competitive benchmarks are regularly published and
become the most important competitive advantage.

Our findings validate the assertion that since the
quality of in-house and retail software are measured after
development by either the intemal customer or the market
analyst, there is less need for image building. The
contractual software developer, on the other hand, needs to
create an image of quality awareness that could be sustained
using a SPI methodology.

Project Size: The size of the projects was derived
from two factors: development team size, and the time
between the start and finish (the first revenue shipment) of
the software development project. For both factors, we
asked for a range of values rather then a specific value, and
used mean and standard deviation for lower and upper limits
as an indication of size and its varability. Table 3
summarizes this information.

Journal of Information Technology Management, Volume X, Numbers 3-4,1999 39

KUILBOER AND ASHRAFI

Table 3
Size of software projects
Avg. and SD for the size of developing team Avg. and SD for the time between start and the end of
software development project in months
Lower limit Upper Limit Lower limit Upper Limit
SPI =5 pu=31 u=6 : u=20
=47 =7 o=11
=8
Non-SPI p= p=14 p= u=18
&=10 =5 =11
=12

Note: the outliers for the size of development team for non-SPI have been removed

The range for average and standard deviation of
the developing team for projects using SPI were larger than
those for projects not using SPI. However, the same
measures were much closer for development duration. Of
interest is our interpretation that companies who adopt an
SPI methodology apply it to small and large projects, and
since time to market is still the most important criterion for
the software development industry, more manpower is
assigned to larger products to meet the deadline. Projects
developed without using SPI seem to use smaller
developing teams, although there were two very large
projects with over 100 persons in a developing team, which
we took out as the outliers. Based on these findings, our
study provides partial evidence to support the observation
made by some researchers that SPI is deployed for large
projects, and mostly by large companies, who have the
resources to bear the initial cost of undertaking a new
technique.

Impact on Cost, Schedule, and Quality: Once
we got an overall picture of the types and sizes of software
development projects that deploy SPI, and compared them
to those projects that do not use SPI, we wanted to compare
these two categories on different grounds: productivity and
quality. To that end, we asked the respondents to rate the
impact of SPI on cost, schedule, and quality factors ranging
from highly increased, increased, the same, decreased to
highly decreased. We emphasize again, that while SPI users
were expressing their opinion based on experience, the non-
users were merely speculating what the possible impact of
SPI on cost, schedule, and customer satisfaction would be if
they had used it. For the sake of simplicity and clarity, we
have combined highly increased with. increased, and
decreased with highly decreased impact. We discuss the
contributions of our findings to managerial knowledge after
all of the results regarding quality are analyzed. Tables 4
and 5 compare the responses from those who use SPI with
those who do not.

Table 4
Impact on cost
Increased/Highly Decreased /Highly
Increased Same Decreased
Impact of SPI on cost 40% 29.63% 29.63%
(actual cost vs. estimated cost)
Non SPI 30% 70% 0%

40 Journal of Information Technology Management, Volume X, Numbers 3-4,1999

SOFTWARE PROCESS IMPROVEMENT DEPLOYMENT: AN EMPIRICAL PERSPECTIVE

The percentage of SPI users are somewhat evenly
divided over the level of impact of SPI on cost with a slight
tilt toward increased cost. Most of the non-users believe that
SPI has no impact on cost, and about one-third speculates
that cost increases. The impact on scheduling showed
similar results: more than 1/3 of SPI users believed it would

increase, 1/3 said they anticipated no impact, and a little less
than 1/4 reported a decrease in delivery time. About 2/3 of
non-users speculated no impact, less than 1/3 believed
increase, and only 10% felt that use of SPI methodology
would decrease delivery time. Table 5 shows similar results
for the impact of SPI techniques on scheduling,

Table 5
Impact on schedule
Increased/Highly Decreased /Highly
Increased Same Decreased
Impact of SPI on Scheduling 38% 38% 24%
(actual delivery vs. estimated delivery)
Non SPI 30% 60% 10%

Based on these responses we may conclude that
while some SPI users have experienced a decline in cost
and delivery time, the majority does not perceive much
reduction in cost or in scheduling.

Quality factors: To find out whether software
developers perceive SPI as having an impact on these
factors, and/or whether these factors are important enough
to warrant the use of SPI, we asked questions regarding

impact and importance. Respondents ranked the impact of
SPI methodologies on quality factors from very low, low,
average, high, to very high. We combined high and very
high impact (HVH), and used this figure as the basis of our
analysis. Table 6 depicts the percentage of respondents that
perceive the impact of SPI on design quality factors as
HVH.

Table 6
HVH Impact of SPI on Design Quality Factors
Design Quality factors SPI non-SPI
Correctness 48.6% 33.3%
Maintainability 38.9% 40.0%
Verifiability 47.2% 40.0%

Note: the percentage of SPI users and non-SPI users are based on different denominators, thus does not add up

to 100%. :

According to this table, the software developers
who use SPI have a better perception about the impact of
SPI techniques on correctness and verifiability than those
who do not use SPI. Correctness and verifiability are
emphasized by both ISO and CMM and are correlated, in
that if a software product is verifiable, it has a better
chance of being correct. The percentage of respondents
that perceive the impact of SPI on maintainability as
HVH is almost the same for both groups, and is not
perceived as high as the other two factors by SPI users.

This could be due to the fact the maintainability is not a
focus point of either ISO or CMM. Altogether, the
percentages of respondents who ranked the impact high or
very high on each factor by either category are less than
fifty percent; hence, we may conclude that deployment of
SPI does not necessarily improve the quality of design.

Comparing the percentage of respondents of SPI
users and non-users that perceive the impact of SPI on
performance quality factors as HVH revealed interesting
results. Table 7 depicts these results.

Journal of Information Technology Management, Volume X, Numbers 3-4,1999

41

KUILBOER AND ASHRAFI

Table 7
HVH Impact of SPI on Performance Quality Factors
Performance Quality Factors SPI Non-SPI
Efficiency 25.7% 23.1%
Integrity 22.9% 30.8%
Reliability 56.8% 30.8%
Usability 43.2% 41.7%
Testability 55.6% 23.1%

While a much higher percentage of SPI users
reported HVH Impact on reliability and testability, the
percentages of both groups that viewed the impact of SPI
on other performance factors as HVH were almost equal.
Again, reliability and testability are addressed explicitly
by ISO and CMM, and are correlated factors of
performance. A software product that can be tested with
ease has a better chance of being reliable. HVH impact on
efficiency, integrity, and usability did not differ
significantly between the SPI users and non-users. While

Table 8

a smaller percentage of both groups perceived the impact
on efficiency and integrity as significant, more than 40%
reported HVH impact on usability. Both ISO and CMM
address efficiency and integrity only implicitly. We may
conclude that the impact of SPI on product performance is
varied and deployment of SPI does not have a concrete
impact on product performance.

The difference was more significant for
adaptation quality factors. Table 8 summarizes these
results.

The Impact of SPI on Adaptation Quality Factors

Adaptation Quality Factors SPI Non-SPI
Expandability 54.5% 27.3%
Flexibility 48.9% 27.3%
Portability 40.9% 27.3%
Reusability 46.9% 36.4%
Interoperability 31.3% 27.3%
Intra-operability 52.9% 27.3%

42

Journal of Information Technology Management, Volume X, Numbers 3-4,1999

SOFTWARE PROCESS IMPROVEMENT DEPLOYMENT: AN EMPIRICAL PERSPECTIVE

The percentage of SPI users who reported HVH
impact on adaptation factors was well above that of non-
SPI users (except for Interoperability, which shows only a
slight increase). Both CMM and ISO recognize the
importance of adaptation factors. In the dynamic
software market where change management is an
important criterion for success, adaptation factors such as
expandability, flexibility, and reusability are crucial for
the long run maintenance of a family of software
products. Yet, our respondents show a mixed reaction to

the impact of SPI on these factors, indicating inconclusive
results.

Customer Satisfaction: The percentage of
responses that reported HVH impact on customer
satisfaction was quite significant for both groups. More
than two-thirds of the SPI users reported a high to very
high impact on customer satisfaction, and more than half
of non-users speculated high to very high impact. Table 9
shows these results.

Table 9
Impact of SPI Methodologies on Customer Satisfaction
Increased/ Highly Decreased/Highly
Increased Same Decreased
Impact of SPI on 71% 18% 11%
Customer
Satisfaction
Non-SPI 56% 44% 0%

The majority of SPI users and non-users believed
that the use of SPI would improve customers’ perception
of software quality. Table 4-9 summarizes the findings
related to the quality aspect of this study, indicating that
while SPI does not necessarily contribute to the reduction
of cost and delivery time, it creates a perception of quality
in the mind of customers. As for quality factors, at best
the respondents showed a mixed reaction to the impact of
SPI on them, leaving us to believe that SPI does not
visibly improve the quality of design, performance, and
adaption. However, the significant impact on'customer
satisfaction could be based on the mere perception that if
an organization deploys SPI, it should improve the quality

of products. Traditional literature refers to this
phenomenon as perceived quality based on a subjective
assessment resulting from an image. These findings raise
a question among the software developing community
about whether it is the image created by complying with
some established guidelines, or the actual quality
improvement that gains customer satisfaction and the
market share.

The last part of study focused on comparing the
importance of quality factors between SPI users and non-
users. Figure 1 compares the importance of design quality
factors between the two groups.

Figure 1

Comparison of importance design factors

a
% o
[« I}
=
Q 3
Q
sﬂ.
€9
o:
a O
EZ
= 2
Ow
R
correctness

maintainability

verifiability

SPI Mnon-SP! |

Journal of Information Technology Management, Volume X, Numbers 3-4,1999 43

KUILBOER AND ASHRAFI

As the histogram indicates there is no significant
difference between SPI users and non-users as they view
the importance of design factors. Correctness and
verifiability are viewed by a negligible percentage of SPI
users as more important, and maintainability is perceived

by a small percentage of non-users as more important.
The importance of performance factors as it was viewed
by users and non-users was more varied. Figure 2 depicts
these differences.

Figure 2

Comparison of importance of performance factors

% Importance SPI vs Non.

efficiency integrity

reliability usability

testability

|EISPI WNon-SPI |

According to this histogram, non-SPI users

consider integrity, reliability, and usability more

important than SPI users, while both groups consider

efficiency and testability equally important. There were

also some differences between the two groups as they
viewed adaptation factors. Figure 3 displays these
differences.

Figure 3

The importance of adaptation factors

% of Importance for SPIl and NOn-SPI users

|
1
]
|

j

expandibility flexibility

portability

SPI B non-SPI l

interoperability

intra-operability

reusability

44

Journal of Information Technology Management, Volume X, Numbers 3-4,1999

SOFTWARE PROCESS IMPROVEMENT DEPLOYMENT: AN EMPIRICAL PERSPECTIVE

According to this histogram, while SPI users
consider some factors of adaptation slightly more
important, non-users see other factors as slightly more
important. The difference, however, does not seem to be
significant.

Since the above findings were somewhat
inconclusive, we performed the Mann-Whitney-Wilcoxon
test to determine whether there were significant
differences between SPI users and non-users as they
viewed the importance of quality factors. The Mann-
Whitney-Wilcoxon test is a non-parametric alternative to
the student’s t-test for two mutually independent samples.
Its less restrictive assumptions make this test appropriate
for a wide variety of practical research situations in which
classical statistics cannot be applied. The Mann-Whitney-
Wilcoxon test requires only the assumption of any
continuous distribution, no matter what shape, and data
measured on an ordinal scale. Since our data met these
requirements, we performed hypothesis testing and find
the MINITAB solution with P= .4199, which fails to
reject the null hypothesis of no significance difference.
Thus, we may conclude that based on our collected data,
the appreciation for quality factors by the developers are
not the determinant of deployment of SPI methodologies.

CONCLUSION AND SUMMARY

The contribution of this study to the management
of information technology is twofold, based on both our
approach and our findings. Unlike other studies on SPI
that focus on the management viewpoint and

organizational structure, this research is primarily focused
on the developers’ viewpoint on the deployment of SPI,
specifically in New England region.

While exploratory in nature, this study provided
some interesting insights to the deployment of SPI, the
most noteworthy of which is identifying the factors that
influence the deployment of software process
improvement, and determining the actual and perceived
impact of the deployment of SPI on quality and
productivity. The diagram below depicts a causal model
showing that while project type and project size have an
impact on the deployment of SPI, the importance of
quality factors to software developers does not influence
the use SPI. Our survey results disclosed that projects
developed for customers under contract are the most
likely targets for deploying SPI methodologies. The
results also indicated that SPI methodologies, once
adopted, are deployed for large and small projects alike.

Also, the diagram shows that based on
developers’ opinions, we may conclude that although
using SPI does not necessarily produce a quality software
product at a reduced cost or delivery time, it creates a
perception of quality, which leads to the customer
satisfaction.

There was no significant difference between the
percentage of SPI users and non-SPI users in the way they
perceived the importance of software quality factors.
Thus, we may conclude that based on this study the
importance of quality factors is not a determinant factor
on the adoption of the methodologies.

Causal Model for SPI Deployment

Project Type

Project Size

Importance of
Quality Factors

¥ i

y

Deployment of SPI

1 :

1

Cost | Schedule

Impact of Quality
Factors

v v v

v v

Customer Satisfaction

Journal of Information Technology Management, Volume X, Numbers 3-4,1999 45

KUILBOER AND ASHRAFI

Our study is descriptive in nature and has
limitations regarding the sample. There might be some
biases from respondents (especially SPIN members)
towards the impact of SPI methodologies on quality,
timeliness, and reduced cost. This bias may have been
exhibited on the impact on some very important quality
factors such as correctness and reliability, which were
perceived much more favorably by SPI users than those
who did not use SPI.

Since we could not be sure that whether this
sample could be a true representation of software developers
in New England, we did not perform any inferential
statistics that require scientific sampling procedure. We did
use the Mann-Whitney-Wilcoxon test (a non-parametric
approach, which does not require strict assumptions or a
sampling method) to compare the importance of the quality
factors between SPI users and non-users. For future
research, we need to extend our sample to a much broader
base using a sampling method that enables us to make
inferences about a target population.

REFERENCES

1- Cooper, J.D., and M.J. Fisher (ed.) Software Quality
Management, Petrocelli Book, New York, 1979.

2- Fayad, M.E., and Laitinen, M., “Process Assessment
Considered Wasteful” Communications of the ACM,
November, Volume 40, Number 11, 1997, pp. 125-
128.

3- Gardner, B.R,, “ISO 9000 & TQM: Is It OK to
Choose?” The Community Quality Journal, 1997.

4- Gray EMM. and Smith, W.L. “ On the limitation of
Software Process Assessment and the Recognition of
a Required Re-Orientation for Global Process
Improvement,” Software Quality Journal, Volume 7,
1998, pp. 21-34.

5- Hadden, R.,, “How Scalable are CMM Key
Practices,” Crosstalk: The Journal of Defense
Software Engineering, April 98, pp. 18-23.

6- Humphrey W.S., Managing the Software Process SEI
Series on Software Engineering, Addison Wesley,
1989.

7- Johnson, D.I. and Brodman, J.G., “Realities and
Rewards of Software Process Improvement,” [EEE
Software, Volume 13, Number 6, 1996, pp. 99-101.

8- Kuvaja P., “Improving Embedded Systems Quality
With PROFES Methodology,” Tutorial at PROFES
‘99 Conference, Oulu, Finland, June 22nd, 1999.

9- Pressman, R., “Software Process Perceptions,” [EEE
Software, Volume 13, Number 16, November 1996,
pp. 16-18

10- Schaeffer, M.D., “Capability Maturity Model Process
Improvement,” Crosstalk: The Journal of Defense
Software Engineering, May 1998, Volume 11,
Number 5.

11- Schulmeyer, G. and McManus, J.1. The Handbook of
Software Quality Assurance, Prentice Hall, Upper
Saddle River, NJ. 1998.

12- Statz, J., Oxley, D., and O’Tool, P., “Identifying and
Managing the Risks of Software Process
Improvement,” Crosstalk: The Journal of Defense
Software Engineering, Volume 10, Number 4, April
1997.

13- Stelzer, D., Mells, W., and Herzwurm, G., “A Critical
Look at ISO 9000 for Software Quality
management.” Software Quality Journal, Volume 6,
1997, pp. 65-79.

14- Sweeney, A., and Bustard, D.W. “Software Process
Improvement: Making it Happen in Practice,”
Software Quality Journal, Volume 6, Number 4,
1997, pp.265-274.

AUTHORS’ BIOGRAPHIES

Noushin Ashrafi is an Associate Professor in
the Management Science and Information Systems
Department, College of Management at the University of
Massachusetts Boston. Dr. Ashrafi received her Ph.D. in
Management Sciences and Information Systems from the
University of Texas at Arlington. Her current areas of
research include software reliability, fault-tolerant
software, applications of loglinear modeling, and the
utilization of bayesian methods for estimating and
predicting software reliability. Dr. Ashrafi has published

46 Journal of Information Technology Management, Volume X, Numbers 3-4,1999

SOFTWARE PROCESS IMPROVEMENT DEPLOYMENT: AN EMPIRICAL PERSPECTIVE

several papers on these topics and delivered
presentations at numerous conferences.

Jean-Pierre Kuilboer is an Assistant Professor
in the Department of Management Science and
Information Systems at the University of Massachusetts
Boston. Dr. Kuilboer received his Ph.D. in Information
Systems from the University of Texas at Arlington. He has
been an active member of professional organizations such
as the IEEE, ACM, AIS, and SPIN (Software Process
Improvement) group. His Information Systems
publications have appeared in refereed journals such as:
Information & Management, Information and Software
Technology, the Journal of Accounting and Computers,
the Journal of Database Management, Information
Systems Management, Data Base; Journal of Information
Systems Education, Computers and Society, and Data &
Computer Communications.

Journal of Information Technology Management, Volume X, Numbers 3-4,1999 47

