

AN EMPIRICAL FRAMEWORK FOR CHOOSING AN EFFECTIVE TESTING TECHNIQUE FOR SOFTWARE TEST

Journal of Information Technology Management Volume XVI, Number 4, 2005 19

Journal of Information Technology Management

ISSN #1042-1319

A Publication of the Association of Management

AN EMPIRICAL FRAMEWORK FOR CHOOSING AN EFFECTIVE

TESTING TECHNIQUE FOR SOFTWARE TEST PROCESS

MANAGEMENT

SUDIP MISRA

 CARLETON UNIVERSITY
smisra_@scs.carleton.ca

ABSTRACT

The choice of a software testing technique can have severe implications on the quality and efficiency of a testing pro-

ject. One of the fundamental steps in managing a testing project should be selecting an effective testing technique. This paper

discusses a methodology that can be used for experimentally assessing the effectiveness of two or more testing techniques in

practice. The work should help quality managers and related researchers to learn how two or more testing techniques can be

compared experimentally when one needs to choose an effective testing technique for a project. The primary motivation be-

hind this paper is to advocate selecting an effective testing technique in practice in testing projects and providing a framework

that can be readily adopted in practical testing projects. The testing techniques used to demonstrate the above are trivial in

practice, and we did not intend to report the results of their comparisons here.

Keywords: software testing, empirical, test process.

INTRODUCTION

One of the important activities of test process

management is ensuring that a testing strategy that is im-

plemented into the project is efficient, effective in terms

of factors such as cost, time, and the number of bugs that

can be detected. Thus, the choice of a software testing

technique in a testing project can have severe implications

on both process and product quality. Selecting an effective

testing technique is one of the key activities that a test

management program should emphasize on during the

initial stages of test planning. This paper discusses a

framework that can be used for experimentally assessing

the effectiveness of two or more testing techniques.

For testing of software there exists different

techniques that have varied characteristics in terms of

their effectiveness in uncovering faults, repeatability and

cost. Some of the techniques are based on the white-box

methodology of analysis of control flow of programs [9],

[10], some on the analysis of data flow [12], [19], while

some others on the analysis of all executable statements

[1], [16]. In test process management, it is important to

assess the effectiveness of different testing techniques, in

terms of their ability to expose errors and also the size of

test sets required by them. Although some work has been

done to address this issue [2], [3], [4], [5], [7], [11], [17],

there is no definitive and easy answer to the problem [5].

Most of the early studies in this regard have been using

theoretical and formal techniques [3], [5], [17]. While

theoretical results are indeed considered helpful, it is re-

quired to experimentally assess the different testing tech-

niques. Some experimental studies have been done in this

area [3], [4], [11] but the approaches mentioned in them

are highly research-oriented with in-depth knowledge of

Advanced Statistics required to apply them. Those litera-

AN EMPIRICAL FRAMEWORK FOR CHOOSING AN EFFECTIVE TESTING TECHNIQUE FOR SOFTWARE TEST

Journal of Information Technology Management Volume XVI, Number 4, 2005 20

tures do not provide a simple, easy-to-understand and

implement, practitioner-oriented framework that can be

readily used by test managers in the real-life projects, with

little knowledge of advanced research methodologies.

Also, further studies are required with more techniques

and also to validate the results obtained so far.

The work involved, providing a simple and easy-

to-use methodology that can be used in practice for ex-

perimentally comparing two or more testing techniques, in

testing projects to see which technique would be more

effective. For illustrating the use of the framework, two

simple and widely accepted testing techniques, decision

and all paths testing, have been studied. However, the

methodology is not restricted to these techniques, and is

generic enough to be used in other situations. Before pro-

ceeding further, it should be reminded to the readers that

the primary motivation behind writing this paper is to

advocate selecting an effective testing technique in prac-

tice in testing projects and providing a framework that can

be readily adopted in practical test management projects.

The intention behind writing this paper is not merely to

show how decision testing compares with all paths testing.

However, the results obtained in this paper should be

helpful for those who are interested in applying these two

testing techniques in a testing project and thus want to

observe the empirical results of comparison of these tech-

niques.

With the above motivation behind writing this

paper, the experimental study was designed with the fol-

lowing specific four-fold goal:

To select an experimental methodology that allows the

error-detecting ability of different testing techniques to be

compared. It should be possible to use the experimental

framework for assessing other testing techniques.

To use the experimental design to measure and compare

the two testing techniques (decision and all-paths) for a

few subject programs.

To study the relationship, if any, between coverage and

effectiveness, using statistical correlation analysis tech-

nique.

To develop statistical regression models from the cover-

age, faults and size of test sets data, that should help in

predicting the effectiveness from coverage information.

This study involving the comparison of the two

testing techniques should help the testing practitioner to

provide insight into the type of testing technique to be

chosen. In other words, which technique should be

adopted if the number of test cases required is not an im-

portant criterion, and on the other hand, if the number of

faults to be detected is not important, which technique

should be adopted.

This paper is organized in the following way.

First we provide short descriptions of methodologies and

techniques that are used in the study. Then we detail the

design of the empirical study. Next, we describe the ex-

perimental results and the analysis of results obtained.

Following that, the results are summarized and directions

for future work are shown. Finally, the references used in

this study are documented at the end of the paper.

OVERVIEW

Testing Techniques Considered

The testing techniques considered in this study

are classified in the literature as white-box, because to

generate the test cases for these techniques, a thorough

understanding of the source-code of the programs are

needed. The following describes, briefly, the two white-

box techniques that have been used for comparison in this

empirical study:

All-Paths Testing: This requires the execution of all pos-

sible paths that can exist in a program. Faults or defects

are determined if the parts containing them have not been

executed. The paths should have distinct branches from

the start to end of a control flow graph of a program. Al-

though thorough testing is possible using this technique, in

practice, the number of such paths can be too large in

large programs.

Decision Testing: This technique requires the coverage of

all decision paths (i.e., both true and false points) for each

decision point in a program. This technique uncovers

which path(s) that have not been executed in a program

and detects faults that arise from incorrect decision paths

in a program.

Effectiveness of Testing Techniques

In this paper, the effectiveness of testing techniques is

used to

(1) determine in terms of a testing technique’s ability

to detect errors at a certain stage in the testing

process, and to,

(2) describe the cost, in terms of the number of test

cases required to achieve coverage of a program at

certain level.

The more effective a testing technique is at un-

covering errors, the more confidence one can have in the

delivered product that employed the technique. Similarly,

AN EMPIRICAL FRAMEWORK FOR CHOOSING AN EFFECTIVE TESTING TECHNIQUE FOR SOFTWARE TEST

Journal of Information Technology Management Volume XVI, Number 4, 2005 21

the higher the number of test cases required to achieve

100 % coverage, the lesser effective the technique is in

terms of cost.

THE EXPERIMENTAL

FRAMEWORK

The goal of the experiments conducted in this

project was to obtain meaningful information about the

effectiveness of the testing techniques to be compared and

to measure and compare their effectiveness using different

programs. In these studies, it is quite understandable that

the programs used and the nature of faults embedded in

them is important. They are described below.

Subject Program

The following are the brief descriptions about the

two subject ‘C’ programs considered in this study. Table 1

provides a summary of the subject program. (In Table 1,

LOC, refers to the number of lines of code in a program,

NSTAT is the number of executable statements and

NDEC is the number of decision statements).

The program consists of a function, maths, which

performs some basic operations, such as square, square

root, on inputs. The function returns a value, indicating

the success-level of the operation performed.

 Table 1: Subject Program

Prog LOC NSTAT NDEC Description

maths 68 15 7 Math functions

Fault Seeding / Fault Data

The fault space was restricted to artificially

seeded faults into each of these programs. Faults were

seeded manually into the subject programs. In the experi-

ment, 35 faulty versions of the program, maths, were cre-

ated. The results of this study should be interpreted, keep-

ing in mind this limited representation of the faults and the

size of the program considered. The faults were seeded

using different ‘C’ mutation operators [8]. Some of the

mutation operators considered are, “while replacement by

do-while”, “Statement Deletion”, “break replacement by

continue”, “Scalar Variable Replacement”, “Move Brace

Up or Down”, “Unary Operator Mutations” and “Binary

Operator Mutations”. Several types of faults were consid-

ered to make the data realistic to real-life situations where

broad ranges of faults may occur.

Tools used

Two testing tools, Cantata

(http://www.iplbath.com) and GCT

(http://www.testing.com), were used in this study for

measuring test coverage and also for executing test cases.

The Experimental Procedure

To following major steps were undertaken to

measure the effectiveness of the two testing techniques

considered in this study:

Generating a large number of faulty versions, or mutants,

of each subject program one considers in the study, e.g.,

35 mutants for maths. Table 2 summarizes the number of

mutants, used in this study.

 Table 2: Number of mutants

Base Program Number of mutants

maths 35

Generating and executing test cases for each version or

the mutant. Coverage was measured right from the begin-

ning.

1. Checking the outputs and obtaining the values of all-

paths coverage, decision coverage, percentage faults

detected, and the number of test cases required.

2. Applying coverage: After the test cases were run at

each step, the coverage values were increased in

small amounts, by adding a few more test cases, until

100 % coverage is obtained.

The results obtained from the above study are

summarized in Table 3. These results are then analyzed in

a later section, for effectiveness of the criteria.

Investigating why certain mutants were not

killed

This experimental process was carefully moni-

tored to check whether all mutants were killed. If any mu-

tants were not killed, it was investigated why they were

not. A common cause for mutants remaining alive is that

some mutants are equivalent to other mutants. This inves-

tigation was done to ensure that the testing results are

complete and accurate.

AN EMPIRICAL FRAMEWORK FOR CHOOSING AN EFFECTIVE TESTING TECHNIQUE FOR SOFTWARE TEST

Journal of Information Technology Management Volume XVI, Number 4, 2005 22

DATA ANALYSIS

The data obtained from the experiments were the

number of faults detected and the required number of test

cases at different coverage level. Each subject program’s

data was treated as that of a separate experiment. The ba-

sic goal was to observe how fault detection and the num-

ber of test cases varied as coverage levels were increased

towards 100%.

Methodology

Let Nc be the total number of coverage condi-

tions satisfied by a testing technique and let Xc be the total

number of coverage conditions satisfied by the technique.

Then, the value, Pc = Xc/Nc, at any instance, is the propor-

tion of the total number of coverage conditions satisfied

by the technique. It is an estimator of the obtained cover-

age level, at any instance. Let Nf be the total number of

faults in a program and F the number of faults detected at

any instance. Then, the ratio Pf = F/Nf , is the estimator of

the faults detected, at any instance. Similarly, let S be the

size of the test set at any instance. The values, Pc, Nf, and S

will be used as estimators to study the effectiveness.

Let the proportion of coverage conditions satis-

fied by all-paths testing be denoted by Pcp = Xcp/Ncp while

that of decision testing be denoted by Pcd = Xcd/Ncd. If for a

particular value of Pc, the value of Pf is higher than its’

value, the former technique will be supposed to be more

effective than the latter in detecting faults, at that instance.

On the contrary, if the size of test cases is lower for the

former criterion than the latter criterion, the former will be

supposed to be more effective in terms of number of test

cases required than the latter.

Table 3 summarizes the results of the experiments. The

obtained data were required to examine the relationships

among the coverage level, size and fault detection attrib-

utes. Figures 1-2 show the plots for coverage and percent-

age faults detected and number of test cases required.

 Table 3: Summarized Results

Sl

No

Pcd Pcp Pfd Pfp S

1 0.16 0.26 0.2 0.32 2

2 0.30 0.42 0.36 0.51 3

3 0.58 0.55 0.59 0.68 5

4 0.66 0.74 0.71 0.73 6

5 0.72 0.88 0.75 0.76 8

6 0.89 0.96 0.82 0.81 9

7 1.00 1.00 0.91 0.91 10

Faults Detected vs Coverage

0

20

40

60

80

100

0 50 100 150

Coverage %

F
a
u
lt
s
 D
e
te
c
te
d
 %

Decision

All Paths

 Figure 1: Fault Detection versus Coverage

Number of Test Cases Required vs

Coverage

0

2

4

6

8

10

12

0 50 100 150

Coverage %

N
u
m
b
e
r
o
f
T
e
s
t

C
a
s
e
s All Paths

Decision

Figure 2: Number of Test Cases vs Coverage

AN EMPIRICAL FRAMEWORK FOR CHOOSING AN EFFECTIVE TESTING TECHNIQUE FOR SOFTWARE TEST

Journal of Information Technology Management Volume XVI, Number 4, 2005 23

From a close inspection of the plots in Figures

and 2 we see that, for the example, in terms of the fault

detection ability, all-paths coverage out-performs decision

coverage until the value of 70-75%, after which both of

them perform almost equally. However, at least for this

example, if not for all possible examples the difference in

performance levels is not too significant. In terms of size,

the number of test cases covered by decision coverage is

slightly less than that of all-paths coverage, although the

difference is not too high. Considering the overall picture,

we see that all-paths coverage is more effective than deci-

sion coverage for detecting faults; however, the number of

test cases required to achieve 100 % coverage for decision

testing is slightly less than that of all-paths testing.

Relationship between Coverage and Effec-

tiveness

It is necessary to determine if there is a relation-

ship between effectiveness and coverage, in other words,

whether there is a relationship between the extent to which

a test set satisfies statement or decision coverage and the

probability that the test set will expose an error. Statistical

Correlation Analysis technique is used for this purpose.

The experimental data is then used to build Least-Squares

Regression Models. Statistical Analysis was performed

using SPSS
TM

(http://www.spss.com).

If an increase (or decrease) of one variable (e.g.

coverage) results in an increase or decrease in the other

(e.g. percentage faults detected), the correlation is said to

be positive. If the increase (or decrease) in one corre-

sponds to decrease (or increase) in the other, the correla-

tion is said to be negative. If there is no relationship indi-

cated between the variables, the variables are uncorre-

lated. In this study, Pearson’s Correlation Coefficient is

calculated. Higher the value of the correlation coefficient,

the higher is the degree of association between the vari-

ables plotted and vice-versa.

A Regression Model gives the line of best fit for

a given distribution of data. The line of regression of y on

x is given by:

y-y’ = r (σy/σx) (x-x’)

Here x’ and y’ are the mean values of x and y respec-

tively. The slope of this line is called the Regression Coef-

ficient of y on x.

In this study, we assume y to be the % faults de-

tected (denoted by f), x the coverage (denoted by d, for

decision coverage and s for statement coverage), and t the

size of test sets. The results of Correlation and Least-

Square Regression Analysis are summarized in Tables 4

and 5 respectively. It can be observed from Table 4, that

all the relationships were significant at the 5% level. The

regression equations summarized in Table 5 will be help-

ful for predicting the number of faults or the number of

test cases required when the coverage value is known.

 Table 4: Results of Pearson’s Correlation Analysis

Relationship Correl

Coeff

Stats.

Signif?

Signif

Level

Decision Coverage and faults detected 0.980 yes 1%

All-paths Coverage and faults detected 0.948 yes 1%

Decision Coverage and Size 0.997 yes 1%

All-paths Coverage and Size 0.990 yes 1%

 Table 5: Regression Equations

Relationship Regression Equation

Decision Coverage and faults detected f = 0.0133 d
2
 – 1.6638 d + 118.385

All-paths Coverage and faults detected f = 1.4 p
2
 – 171.31p + 12021.32

Decision Coverage and Size t = -0.0022 d
2
 + 0.5119 d + 0.059

All-paths Coverage and Size t = -18.01p
2
+ 60.19 p + 4.98

AN EMPIRICAL FRAMEWORK FOR CHOOSING AN EFFECTIVE TESTING TECHNIQUE FOR SOFTWARE TEST

Journal of Information Technology Management Volume XVI, Number 4, 2005 24

CONCLUSIONS

The paper provided a simple practitioner-

oriented framework for experimentally assessing the ef-

fectiveness of two or more testing techniques in a testing

project. This study experimentally evaluated and com-

pared the effectiveness of two important and frequently

used testing techniques, viz., decision testing and all-paths

testing. Interesting results were obtained from the study,

some of them supported the proposed hypotheses and

some did not. The results are summarized as follows:

• Globally, all-paths coverage was found to be

more effective than decision coverage in terms of

the ability to detect faults.

• In terms of the number of test cases required,

both of them performed very closely, although

all-paths was slightly higher than decision.

• At higher ranges of coverage values (values ap-

proximately > 75 %), both all-paths and decision

coverage performed almost equally.

• There was a high degree of positive correlation

between effectiveness in terms fault detection or

number of test cases required and percentage of

coverage.

• Regression models for the different relationships

shown in Table 6, should help one to predict

faults when the value of coverage is known.

• None of the three techniques can guarantee 100

% fault detection at 100 % coverage levels. In

both the programs there were many mutants that

were not killed, even after achieving 100 % cov-

erage values. Thus 100 % coverage doesn’t

guarantee fault-free software.

It should be alerted here that, there were no as-

sumptions made in this study about the characteristics of

the sample programs. Thus it is not claimed that the re-

sults are representative of all kinds of software possible.

Future work in this area may include, validating the results

obtained with software having varied characteristics. Also,

the promising and interesting results obtained in the paper

should motivate readers to conduct other similar studies

for experimentally comparing different pairs of testing

techniques. It would be also interesting to study the cost in

terms of time in employing the different testing tech-

niques.

REFERENCES

[1] Beizer, B. Software Testing Techniques, 2
nd

 edn.,

Van Nostrand Reinhold, 1990.

[2] Frankl, P. and Weiss, S. “An Experimental Com-

parison of the Effectiveness of Branch Testing and

Data Flow Testing”, IEEE Transactions on Soft-

ware Engineering 1993, 19:8, pp. 774-787.

[3] Frankl, P. and Weyuker, E. J. “A Formal Approach

of the Fault Detecting Ability of Testing Methods”,

IEEE Transactions of Software Engineering, 1993,

19:3, pp. 202-213.

[4] Frankl, P. “All-Uses versus Mutation Testing: An

Experimental Comparison of Effectiveness”, Jour-

nal of Systems and Software, Sept. 1997.

[5] Frankl, P. and Iakounenko, O. “Further Empirical

Studies of Test Effectiveness”, ACM SIGSOFT

Sixth International Symposium on the Foundations

of Software Engineering, Nov. 1998.

[6] Gottfried, B. Programming with C, Schaum’s Out-

line Series, Tata McGraw-Hill Publishing Co., New

Delhi, 1991.

[7] Hamlet, D. “Theoretical Comparison of Testing

Methods”, Proceedings ACM SIGSOFT Third Sym-

posium on Software Testing, Analysis, and Verifica-

tion, 1989; pp. 28-37.

[8] Agrawal H. et al., “Design of Mutation Operators

for the C Programming Language”, Technical Re-

port, SERC, Department of Computer Science,

Purdue University, 1989.

[9] Huang, J. “An Approach to Program Testing”, ACM

Computing Surveys, 1975, 7:3, pp. 113-128.

[10] Howden, W.E. “A Survey of Dynamic Analysis

Methods, Tutorial: Software Testing and Validation

Techniques”, IEEE Computer Society Press, 1978,

pp. 209-213.

[11] Hutchins et al., M. “Experiments on the Effective-

ness of Dataflow- and Control flow-Based Test

Adequacy Criteria”, Proceedings of the Interna-

tional Conference on Software Engineering, IEEE

ICSE-16, 1994.

[12] Laski, J.W. and Korel, B.A. “Data Flow Oriented

Program Testing Strategy”, IEEE Transactions on

Software Engineering, 1983, SE-9:3, pp. 347-354.

[13] Marick, B. “Experience With the Cost of Different

Coverage Goals for Testing”, Reliable Software

Technologies, 1997

[14] Marick, B. “How to Misuse Code Coverage”, Reli-

able Software Technologies, 1997.

[15] Marick, B. The Craft of Software Testing, PTR,

1995.

AN EMPIRICAL FRAMEWORK FOR CHOOSING AN EFFECTIVE TESTING TECHNIQUE FOR SOFTWARE TEST

Journal of Information Technology Management Volume XVI, Number 4, 2005 25

[16] Myers, G. The Art of Software Testing, Wiley,

1979.

[17] Offutt, A.J. “Investigations of the Software Testing

Coupling Effect”, ACM Transactions on Software

Engineering Methodology, 1992, 1:1, pp. 15-20.

[18] Pressman, R. Software Engineering: A Practitio-

ner’s Approach, 5
th
 edn., McGraw Hill, New York,

2000.

[19] Rapps, S. and Weyuker, E.J. “Selecting Software

Test Data Using Data Flow Information”, IEEE

Transactions on Software Engineering, 1985; SE-

14:4, 367-375.

AUTHOR BIOGRAPHY

Sudip Misra earned his Ph.D. degree from

Carleton University, in Ottawa, Canada. Prior to this, he

received his Masters and Bachelors Degrees from the Uni-

versity of New Brunswick (Fredericton, Canada), and the

Indian Institute of Technology (Kharagpur, India) respec-

tively. He has several years of experience working in aca-

demia, government, and the private sectors. Dr. Misra has

worked on R&D projects in project management, architec-

ture, software design, and product engineering roles at

Nortel Networks (Ottawa, Canada), Atreus Systems Cor-

poration (Ottawa, Canada), and the Government of On-

tario (Toronto, Canada).

