
CAN DISTRIBUTED DB PROVIDE AN EFFECTIVE MEANS OF SPEEDING WEB ACCESS TIMES

Journal of Information Technology Management Volume XVIII, Number 1, 2007

1

Journal of Information Technology Management

ISSN #1042-1319

A Publication of the Association of Management

CAN DISTRIBUTED DATABASES PROVIDE AN EFFECTIVE

MEANS OF SPEEDING UP WEB ACCESS TIMES

CHRISTOPHER G. BROWN

 SAINT CLOUD STATE UNIVERSITY
chrisb@stcloudstate.edu

DENNIS GUSTER

 SAINT CLOUD STATE UNIVERSITY
dcguster@stcloudstate.edu

SARA KRZENSKI

 SAINT CLOUD STATE UNIVERSITY
krsa0601@stcloudstate.edu

ABSTRACT

To support web application performance scalability, it is important to optimize stored data, which can be extracted,

processed and forwarded to a web client. Hard drive technology, based on mechanical technology, is the slowest part of the

information retrieval. Given the “millions-to-one” mechanical bottleneck, it is reasonable to investigate optimization by stor-

ing data on multiple disks, distributed across multiple devices. This methodology suggests a reduction of data access time.

With the “millions of hits scenario” and as Internet services continue to grow, research is needed to delineate the performance

advantages of distributed databases and the basic models of configuration. This paper used a series of experiments with three

different distribution algorithms to determine the potential advantage of a distributed database. It was found that a load bal-

ancing algorithm run on four data base nodes could significantly improve performance.

Keywords: distributed databases, load balancing, IO performance, Parallel algorithms

INTRODUCTION

Before applications became web applications

(pre-http), the maximum number of potential users was

limited to the size of the connected private network, gen-

erally a maximum value in the thousands of users. With

Internet web applications, it is not unreasonable to expect

a value (of potential users) in the millions of users.

To support web application performance scal-

ability, it is important to optimize stored data, which can

be extracted, processed and forwarded to a web client.

Hard drive technology, based on mechanical technology,

is the slowest part of the information retrieval. With state

of the art disk drive technology, adequate performance

cannot be obtained with the most intensive web applica-

tions involving the “millions of hits scenario.”

Given this “millions-to-one” mechanical bottle-

neck, it is reasonable to investigate optimization by stor-

CAN DISTRIBUTED DB PROVIDE AN EFFECTIVE MEANS OF SPEEDING WEB ACCESS TIMES

Journal of Information Technology Management Volume XVIII, Number 1, 2007

2

ing data on multiple disks, distributing across multiple

devices. This methodology suggests a reduction of data

access time; and as Elnikety et al. [4] shows, there was an

improvement of throughput by ten percent and a decrease

workstation response time by a factor of 14 when distrib-

uted databases were employed. Further it appears that

there are three variables to consider in trying to optimize a

distributed database within a WWW application.

The first variable acknowledged was workload

intensity. Intensity increases the need to utilize a form of a

distributed database. Kanitkar et al. [9] determined that

distributed databases offer significant performance advan-

tages, if the system was large enough, in terms of users.

Kanitkar [8] found it takes about 40 users to reach a per-

formance threshold.

The second factor was the number of distributed

database nodes. As expected, adding additional nodes

reduces access time. However, Guster et al. [5] states a

point of diminishing returns occur when the communica-

tion overhead among the many nodes negates the per-

formance effect of adding additional nodes.

The third variable acknowledged was the algo-

rithm used to distribute the inquiries across multiple

nodes. A symmetric algorithm, one that provides an equal

chance of any given inquiry landing on any specific node,

was expected to offer the most promise.

Although the concept of the distributed database

has been around for over 20 years, it has not become

dominate in business-related applications. The complexity

and cost of adding database nodes has inhibited develop-

ment and use [6, pp 24]. Specifically Anthes [2] states that

deployed distributed database systems have barely moved

beyond scientific, engineering and mathematical/statistical

applications.

With the “millions of hits scenario” and as Inter-

net services continue to grow, research is needed to de-

lineate the performance advantages of distributed data-

bases and the basic models of configuration. Smith et al.

[15] agrees and specifically states the need for more per-

formance evaluation research with larger databases.

Advantages

Peddemors et al. [11] state there are numerous

advantages to using the distributed database architecture,

especially when the load becomes intense. They further

state it is especially well suited for HTTP applications

across the Internet. Sobol et al. [16] state that the increase

in client-server and other telecommunication-based appli-

cations will spur dispersed and distributed processing,

and, as a result, the need for efficient access to organiza-

tional databases will increase. These increasing demands

on databases make efficient storage space and access time

important issues. Therefore, new and innovative database

architectures, including distributed databases will, be re-

quired. Building distributed databases using the cli-

ent/server architecture has been successful for quite some

time. For example, Roussopoulos et al. [13] developed an

advanced data management system at the University of

Maryland in 1993. However, it appears that the explosion

of Internet applications and the resulting “millions of hits

scenario” has brought the need for employing distributed

databases to the foreground.

Design Considerations

Amiri [1] states that there are numerous inherent

advantages for a multimedia retailer to select a distributed

database architecture. However, the design of the system

must be well thought out. The problem consists of plan-

ning the design/expansion of the distributed database sys-

tem by introducing new database servers and possibly

retiring some existing ones. The goal will be to reduce

telecommunication costs for processing user queries and

server acquisition as well as operations and maintenance

in a multi-period environment where user-processing de-

mand varies over time.

Li et al. [10] also emphasized the importance of

good design. They state, with the availability of content

delivery networks (CDN), many database-driven web ap-

plications rely on data centers that host applications and

database contents for better performance and higher reli-

ability. However, it raises additional issues associated

with database/data center synchronization,

query/transaction routing, load balancing, and application

result correctness/precision. Therefore, they feel that these

design issues must be addressed if critical web applica-

tions in a distributed data center infrastructure are to be

successful.

Simha et al. [14] have described two of the major

concerns of distributed database design. One is the prob-

lem of characterizing the number of distinct sites accessed

by transactions in a distributed database, and the other is

the problem of determining the number of block accesses

in a relation. The first problem is directly related to this

study because it deals with the number of nodes and the

access pattern. The second problem deals with how the

data will be subdivided within a given node.

The literature reviewed reveals concerns about

maintaining reliability given the added complexity of dis-

tributed databases. Xiong et al. [19] addressed that con-

cern. Data replication can help database systems meet the

CAN DISTRIBUTED DB PROVIDE AN EFFECTIVE MEANS OF SPEEDING WEB ACCESS TIMES

Journal of Information Technology Management Volume XVIII, Number 1, 2007

3

stringent temporal constraints of current real-time applica-

tions, especially web-based directory and electronic com-

merce services. A prerequisite for realizing the benefits of

replication, however, is the development of high-

performance concurrency control mechanisms. Simply

stated, this means all nodes containing the data must be

synchronized and up to date.

Wu et al. [18] agree that reliability is important

and, therefore, devised a protocol to address the problem.

Their paper presented a novel scheme for implementing a

flexible replica control protocol in distributed database

systems. The scheme required fewer nodes to be locked to

perform the read/write operations. This not only provided

better performance but also gave the system designer extra

flexibility to implement the protocol.

Performance Issues

Cannataro et al. [3] are proponents of distributed

processing. They state that the integration of parallel and

distributed computational environments will produce ma-

jor improvements in performance for both computing and

data intensive applications in the future. In fact, their in-

troductory article provides an overview of the main issues

in parallel data intensive computing in scientific and

commercial applications. The article also encourages the

reader to go into the more in-depth articles that appeared

later in the special issue journal in which their work was

published.

Jutla et al. [7] feel that it is important for end us-

ers to be able to evaluate the performance potential of

distributed databases. Their paper focuses on the design

issues in developing benchmarks for e-commerce. They

state that because of the multidisciplinary aspects of e-

commerce and the various emerging and distinct e-

commerce business models, creating a single benchmark

for the e-commerce application is not feasible. Further-

more, they add, the diverse needs of small to medium en-

terprises (SMEs) and big business motivate the need for a

benchmark suite for e-commerce.

Rajamani [12] states that the key to providing

adequate performance in today’s Internet applications is

attacking the data request time problem. Specifically, web

sites have gradually shifted from delivering just static html

pages and images to customized, user-specific content and

a plethora of online services. Multi-tiered database-driven

web sites form the predominant infrastructure for most

structured and scalable approaches to dynamic content

delivery. However, even with these scalable approaches,

the request-time computation and high resource demands

for web sites with dynamic content generate results in

significantly higher latency times and lower throughput

compared to sites with just static content. As a result,

these sites require well thought out designs [17].

Kanitkar [8] states that the method for distribut-

ing the queries across the nodes has a major impact on

data request time. To attack that distribution problem, he

also proposed a new policy for scheduling transactions

that assigned higher priorities to transactions that have

more of their required data available locally. Then, in or-

der to further improve the efficiency of the distributed

database, he proposed a load-sharing mechanism that co-

ordinated the movement of data and transactions so as to

process each transaction at the site that offered the highest

probability of successful completion.

Scope of the Study

In the interest of keeping the study feasible and

narrowly focused, several parameters were defined to help

clarify the test environment used:

 Server Operating System Selection. The server

operating system selected for this project was Linux be-

cause of its openness and high degree of flexibility. Linux

offered high performance due to its low overhead and

optimized code.

Database Software Selected. The database soft-

ware selected was MySQL. This software was tuned to the

Linux operating system and uses the standard SQL lan-

guage.

Database Structure. The structure of the data-

base was limited to a single table. The goal of the study

was to gain a baseline by varying the number of nodes, the

workload, and the distribution algorithm.

Workload Generator. Siege was selected as the

workload generator because it was designed to let devel-

opers measure performance of their code under “siege” or

duress. Siege allows load variation with a configurable

number of transactions, the sum of simulated users, and

the number of times each simulated user repeats the proc-

ess of accessing the server.

Distribution Algorithms. Although there is multi-

tude of possibilities, this study focused on three of the

most basic: sequential, random and load checking. The

sequential method assigns requests in sequence among the

allocated nodes verses the random method which assigns

requests randomly among the allocated nodes. As for the

load checking method, it checks the node to make sure its

utilization is less than a certain load threshold.

CAN DISTRIBUTED DB PROVIDE AN EFFECTIVE MEANS OF SPEEDING WEB ACCESS TIMES

Journal of Information Technology Management Volume XVIII, Number 1, 2007

4

Size of Cluster and Scaling Pattern. The maxi-

mum number of database nodes utilized was limited to

four. In terms of scaling, it has been common to use the

following pattern to access performance: 1, 2, 4, 8, and 16

processors. This scaling “doubling” pattern has been

widely used in other studies; and from a consistency and

transferability perspective, it was adopted in this study.

These limitations were presented to make the study more

manageable in scope and to make it easier for the reader

to evaluate/use the results.

METHODOLOGY AND RESULTS

Research Questions

This paper explored the effectiveness of a dis-

tributed database under a variety of conditions by con-

ducting experiments using different combinations of vari-

ables listed above. Specifically, the following questions

were researched:

1. How does the workload intensity influence

the need and performance of distributed da-

tabase applications?

2. How does the number of database nodes af-

fect the data access time?

3. How does the algorithm used to assign a

given query to a specific database node in-

fluence the access time?

These questions were modified to provide three

null hypotheses which can be tested through experimenta-

tion.

H1. Workload intensity has no affect on the re-

trieval time of records from a distributed da-

tabase and hence on the delay to the origi-

nating client.

H2. The number of nodes a database is stored

upon has no affect on response time to the

originating client.

H3. The algorithm used to distribute requests to a

given distributed database node has no affect

on the delay to the originating client.

To collect data to test these hypotheses, a data-

base test bed was devised in which the workload was

simulated for any number of concurrent client browser

sessions. The distribution algorithm was varied and the

number of nodes on which the database was distributed

varied from one to four. A drawing of this test bed ap-

pears below as Figure 1.

Linux Db Servers running PHP & MySQL

Linux Client with Siege

Linux Apache Server

Linux with TCP/DUMP

Db1

..59.70

Db2

..59.71

Db3

..59.72

Db4

..59.73

Figure 1: Test-bed Used

The actual collection agent within this environ-

ment was a packet sniffer process generated by

TCPDUMP. This collection agent trapped data from each

packet generated by the experimental tests. The URL’s

used to test the three methods were sequential, random

and load balanced. More detail about these methods is

available at

http://web.stcloudstate.edu/chrisb/thesis_20050501.doc.

CAN DISTRIBUTED DB PROVIDE AN EFFECTIVE MEANS OF SPEEDING WEB ACCESS TIMES

Journal of Information Technology Management Volume XVIII, Number 1, 2007

5

The apache server would then redirect the output based on

the predefined algorithm set up for each method. The

following variables appeared in each packet record: time

stamp, source Media Access Control (MAC) address, des-

tination MAC address, size of the packet, source net-

work.node.port address, and destination net-

work.node.port address. This data, once processed, pro-

vided metrics in the following categories: delay to the

client, data throughput, and data intensity. A high-end

processor running Linux generated the workload. The

software used was Siege, which was able to generate web

traffic streams of varying intensity. For the experiments

run herein, the traffic of eight consecutive groups of 50,

100, and 200 clients was generated in three separate tests.

The client requests were forwarded to a Linux web server

via a 100 Mbps Ethernet network. The web server, in turn,

made the disk Input/Output (I/O) requests to either one,

two, or four database servers running a MYSQL database,

consisting of a single indexed table having 29 fields con-

taining 11,552 records. In the case where multiple data-

base servers are used, the same database was replicated to

each database node. Therefore, the data request could be

filled by any one of the four potential databases and return

the same results.

Different methods were used to determine which

of the data base servers (if multiple db servers were used)

would receive any given request. In the sequential

method, the requests followed a set sequence: server one,

then two, then three, then four, then back to one. The ran-

dom method used a random number generator to select a

dbserver randomly from the pool of servers. It was ex-

pected that if the number generator were truly random, the

workload would be evenly distributed. The load balancing

method monitored the operating system on each potential

database node to ascertain its current load in real time.

Dbservers under heavy loads, which were unable to report

in a timely interval, were assumed to be at 100% utiliza-

tion. Selection was based on the lowest utilization cur-

rently reported.

The data collected was reported in a series of

Tables. Tables one through three appear below:

Table 1: 8 Consecutive Iterations of 50 Concurrent Sessions.

Query Distribu-

tion Type

Sequential

Iterations

Server

Nodes Clients

Average Delay

(ms)

Throughput

(bytes/s)

Packet Inten-

sity (packets/s)

N/A 8 1 50 2.07193316 92758.467 241.321

Sequential 8 2 50 0.74688173 191275.131 669.450

Sequential 8 4 50 0.39466387 312233.329 1266.901

Random 8 2 50 0.71621023 167432.264 698.119

Random 8 4 50 0.47683332 275472.700 1048.584

Load Balanced 8 2 50 0.17195826 252105.315 2907.682

Load Balanced 8 4 50 0.08090560 522526.965 6180.042

The data that was collected at the 50 client level

is displayed in Table 1. At the 50-client level, each test

was performed once per method and dbserver node con-

figuration. As the session load increased, the performance

difference was amplified and, as a result, suggested a

higher performance return per additional dbserver node.

• The first column describes the database node

allocation method. This concept is not appli-

cable when only one dbserver is used.

• The second column describes the number of

times that the simulated 50 clients generated

a request stream.

• The third column depicts the number of da-

tabase servers used.

• The fourth column reports the number of

simulated clients generating the workload.

• The fifth column reports the average delay

back to the client in filling the request

• The sixth column depicts the throughput in

bytes per second.

• The last column reports the intensity of

packet traffic.

CAN DISTRIBUTED DB PROVIDE AN EFFECTIVE MEANS OF SPEEDING WEB ACCESS TIMES

Journal of Information Technology Management Volume XVIII, Number 1, 2007

6

Table 2: 8 Consecutive Iterations of 100 Concurrent Sessions.

Query Distribu-

tion Type

Sequential

Iterations

Server

Nodes Clients

Average Delay

(ms)

Throughput

(bytes/s)

Packet Inten-

sity (packets/s)

N/A 8 1 100 3.88490715 44360.966 128.703

Sequential 8 2 100 0.71031160 197973.048 703.916

Sequential 8 4 100 0.37551237 361269.535 1331.514

Random 8 2 100 0.63998721 202004.413 781.266

Random 8 4 100 0.44903326 312168.375 1113.503

Load Balanced 8 2 100 0.13790886 318776.122 3625.583

Load Balanced 8 4 100 0.08812921 484603.770 5673.488

Table 3: 8 Consecutive Iterations of 200 Concurrent Sessions.

Query Distribu-

tion Type

Sequential

Iterations

Server

Nodes Clients

Average Delay

(ms)

Throughput

(bytes/s)

Packet Inten-

sity (packets/s)

N/A 8 1 200 4.80601741 17878.602 104.036

Sequential 8 2 200 5.19456850 21524.983 96.254

Sequential 8 4 200 0.34005095 330987.386 1470.368

Random 8 2 200 13.61430900 8529.467 36.726

Random 8 4 200 0.89513973 157894.511 558.572

Load Balanced 8 2 200 0.10743538 424712.763 4653.961

Load Balanced 8 4 200 0.05969465 724683.596 8375.961

A comparison of values at the various client lev-

els is best demonstrated graphically and Figures 2-10 will

depict the values observed on average delay, throughput,

and packet intensity. Figures 2-4 depict average delay in

respect to the sequential, random, and load-balanced

methods respectively. Detailed plots of session times and

packet payloads for the sequential, random, and load-

balanced models by loads of 50, 100, and 200 concurrent

sessions are available on request.

CAN DISTRIBUTED DB PROVIDE AN EFFECTIVE MEANS OF SPEEDING WEB ACCESS TIMES

Journal of Information Technology Management Volume XVIII, Number 1, 2007

7

0.00000000

1.00000000

2.00000000

3.00000000

4.00000000

5.00000000

6.00000000

1 2 4

A
v
er
ag

e
D
el
ay

 (
m
s)

Nodes

50
100
200

Figure 2: Series of Concurrent Sessions. Sequential Nodes vs. Average Delay

0.00000000

2.00000000

4.00000000

6.00000000

8.00000000

10.00000000

12.00000000

14.00000000

16.00000000

1 2 4

A
v
er
ag

e
D
el
ay

 (
m
s)

Nodes

50
100
200

Figure 3: Series of Concurrent Sessions. Random nodes vs. Average Delay

CAN DISTRIBUTED DB PROVIDE AN EFFECTIVE MEANS OF SPEEDING WEB ACCESS TIMES

Journal of Information Technology Management Volume XVIII, Number 1, 2007

8

0.00000000

1.00000000

2.00000000

3.00000000

4.00000000

5.00000000

6.00000000

1 2 4

A
v
e
ra
g
e
 D
e
la
y
 (
m
s)

Nodes

50
100
200

Figure 4: Series of Concurrent Sessions. Load Balanced vs. Average Delay

In all methods, delay decreased as the number of

dbservers was increased. However, in the case of the se-

quential and largely the random method, delay actually

increased when moving from one to two servers and

showed improvement (measured decrease in average de-

lay) when using four dbservers. It is clear that load bal-

ancing was the most efficient. Although the sequential

method resulted in the desired decreasing linear pattern, it

was not as pronounced as with the load balancing method.

The random method demonstrated more efficiency loss

due to calculation overhead at the 2 dbserver level and did

not obtain the efficiency that either of the other two mod-

els had at higher load levels. The load balancing method

produced the most dramatic improvement at all levels

when compared to the other two models.

0.000

50000.000

100000.000

150000.000

200000.000

250000.000

300000.000

350000.000

400000.000

1 2 4

T
h
ro
u
g
h
p
u
t
(b
y
te
s/
s)

Nodes

50

100

200

Figure 5: Series of Concurrent Sessions. Sequential Nodes vs. Throughput

CAN DISTRIBUTED DB PROVIDE AN EFFECTIVE MEANS OF SPEEDING WEB ACCESS TIMES

Journal of Information Technology Management Volume XVIII, Number 1, 2007

9

0.000

50000.000

100000.000

150000.000

200000.000

250000.000

300000.000

350000.000

1 2 4

T
h
ro
u
g
h
p
u
t
(b
y
te
s/
s)

Nodes

50
100
200

Figure 6: Series of Concurrent Sessions. Random vs. Throughput

0.000

100000.000

200000.000

300000.000

400000.000

500000.000

600000.000

700000.000

800000.000

1 2 4

T
h
ro
u
g
h
p
u
t
(b
y
te
s/
s)

Nodes

50
100
200

Figure 7: Series of Concurrent Sessions. Load Balanced Nodes vs. Throughput

With the decrease of delay (by adding additional

dbservers), an increase in throughput was expected. The

results of the throughput were not as dramatic as delay. By

adding additional dbservers, there was a liner trend dem-

onstrated by an increase in throughput as we moved from

a sequential model to a load-balanced model. Using the

random model, the data with two and four dbservers are

closely related and nearly congruent. This congruency

can be largely attributed to the calculation overhead effect

of the random algorithm. Further testing would be re-

quired to predict when the throughput thresholds would be

reached by adding more dbservers and contrasting the

CAN DISTRIBUTED DB PROVIDE AN EFFECTIVE MEANS OF SPEEDING WEB ACCESS TIMES

Journal of Information Technology Management Volume XVIII, Number 1, 2007

10

sequential results with the load balanced results. The se-

quential method delivered a nonlinear trend, which depicts

a higher return for each additional dbserver. However, it

should be noted that the load-balanced throughput at four

dbservers is 724,683 bytes per second whereas the se-

quential model at four nodes demonstrated a throughput of

330,987 bytes per second.

0.000

200.000

400.000

600.000

800.000

1000.000

1200.000

1400.000

1600.000

1 2 4

P
ac
k
et
 I
n
te
n
si
ty
 (
p
ac
k
et
s/
s)

Nodes

50

100

200

Figure 8: Series of Concurrent Sessions. Sequential Nodes vs. Packet Intensity

0.000

200.000

400.000

600.000

800.000

1000.000

1200.000

1 2 4

P
a
ck

et
 I
n
te
n
si
ty
 (p

a
ck

et
s/
s

Nodes

50

100

200

Figure 9: Series of Concurrent Sessions. Random Nodes vs. Packet Intensity

CAN DISTRIBUTED DB PROVIDE AN EFFECTIVE MEANS OF SPEEDING WEB ACCESS TIMES

Journal of Information Technology Management Volume XVIII, Number 1, 2007

11

0.000

1000.000

2000.000

3000.000

4000.000

5000.000

6000.000

7000.000

8000.000

9000.000

1 2 4

P
ac
k
et
 I
n
te
n
si
ty
 (
p
ac
k
et
s/
s

Nodes

50

100

200

Figure 10: Series of Concurrent Sessions. Load Balanced Nodes vs. Packet intensity

In all methods, packet intensity generally in-

creased as the number of dbservers was increased. How-

ever, in the case of the random method, there was a clear

indication that overhead is costly until a higher connection

load is sustained. The load-balanced model was more effi-

cient than the sequential model. The load balanced model

peaked with four dbservers undergoing a load of 200 con-

nections at 4,654 packets per second whereas the sequen-

tial model delivered at 1,470 packets per second. The

random model results, with two and four dbservers, are

closely related and nearly congruent. This congruency

can be largely attributed to the calculation overhead effect

of the random algorithm. Further testing would be re-

quired to predict when the packet intensity thresholds

would be reached by adding more dbservers and contrast-

ing the sequential results with the load balanced results.

DISCUSSION OF RESULTS

Rejection of the Three Null Hypotheses

H1. Workload intensity has no affect on the re-

trieval time of records from a distributed data-

base and hence on the delay back to the origi-

nating client.
When moving from 50 concurrent sessions to

200 concurrent sessions on a single dbserver node, the

delay increased from 2.07 to 4.81 milliseconds respec-

tively. Adding additional dbserver nodes, distributing the

workload using the load balanced method among four

nodes, and increasing the concurrent sessions from 50 to

200 decreased the delay from 2.07 to 0.06 milliseconds

respectively. Therefore, hypothesis H1 must be rejected.

H2. The number of nodes a database is stored

upon has no affect on response time to the

originating client.
Using the load balanced method and moving

from one dbserver to four dbservers under a workload of

50 concurrent sessions, there was a decrease in average

delay from 2.07 to 0.08 milliseconds respectively. Setting

the workload to 200 concurrent sessions, using the load

balanced method, and moving from one to four dbserver

nodes decreased the average delay from 4.86 to 0.06 mil-

liseconds. Therefore, hypothesis H2 must be rejected.

H3. The algorithm used to distribute requests to

a given distributed database node has no affect

on the delay back to the originating client.
Setting the workload to 50 concurrent sessions,

using four dbservers, and then switching from the load

balanced to the sequential method, the average delay in-

creased from 0.08 to 0.39 milliseconds and to 0.48 milli-

seconds when switching to the random method. When

increasing the workload to 200 concurrent sessions, using

four dbservers, and switching from the load balanced

method to the sequential method, the average delay in-

creased from 0.06 to 0.34 milliseconds respectively and to

CAN DISTRIBUTED DB PROVIDE AN EFFECTIVE MEANS OF SPEEDING WEB ACCESS TIMES

Journal of Information Technology Management Volume XVIII, Number 1, 2007

12

0.89 milliseconds when switching to the random method.

Therefore, hypothesis H3 must be rejected.

Performance Gain as Attributed to Adding

Dbservers

Average Delay
The Sequential model demonstrated a decrease in

delay when moving from a single dbserver under a load of

50 concurrent sessions to a four dbserver model under the

same load from 2.07 to 0.39 milliseconds respectively.

This effect was amplified when the load increased to 200

concurrent sessions, reducing the delay from 4.81 to 0.34

milliseconds respectively.

It is difficult to measure the scalability with the

load balanced model as it offered an immediate delay re-

duction from 2.07 to 0.08 milliseconds even at the 50 ses-

sion level when moving to four dbservers. The effect is

relatively consistent when we increase the load to 200

concurrent sessions using the same load balanced model

and moving to four dbservers. The result was a reduction

in delay from the single dbserver model from 4.08 to 0.06

milliseconds.

The Random Model offered the least promising

results when addressing packet delay. Compared to a

decrease from 2.07 to 0.39 milliseconds with the sequen-

tial model and a decrease from 2.07 to 0.08 milliseconds

with the load balanced model, the random model offered a

mere decrease from 2.07 to 0.47 milliseconds in average

delay under a load of 50 concurrent sessions when moving

from a single dbserver to four dbservers. Adding the

same number of dbservers under a higher load of 200

concurrent sessions decreased the average delay under the

random model from 4.81 to 0.89 milliseconds respec-

tively. This delay increased from 4.81 to 13.61 millisec-

onds when moving to two db servers using a load of 200

concurrent sessions.

Throughput
The sequential model offered a consistent in-

crease in performance when moving from a single

dbserver to four dbservers. Under a load of 50 concurrent

sessions, the increase to four dbservers using the sequen-

tial method resulted in an increase of throughput from

92,758 to 312,233 bytes per second. Moving from a sin-

gle dbserver under a load of 200 concurrent sessions to

four dbservers, throughput increased from 17,879 to

330,987 bytes per second respectively.

The load-balanced model demonstrated the larg-

est increase in throughput. At a load of 50 concurrent

sessions, when moving from a single dbserver to four

dbservers, throughput increased from 92,758 to 522,527

bytes per second. A load of 200 concurrent sessions,

moving from one dbserver to four dbservers using the

load balanced method, resulted in a respective increase in

throughput from 17,878 to 724,684 bytes per second, a

much lower return then the 50 session load.

The random model offered an increase in

throughput when moving from a single dbserver to four

dbservers under a load of 200 concurrent sessions from

17,878 to 157,894 bytes per second respectively. How-

ever, when moving from one dbserver to two dbservers

under the same load, throughput decreased to 8,529 bytes

per second.

Packet Intensity
The sequential model peaked with an increase of

packet intensity at the 200 concurrent sessions level, when

moving from one dbserver to four dbservers, from 104.04

to 1470.37 packets per second. Under a load of 200 con-

current sessions and one dbserver, there was a respective

decrease in packet intensity when moving to two

dbservers from 104.03 to 96.25 packets per second under

the sequential model.

The random model packet intensity improvement

peaked with an increase of packet intensity with one

dbserver at the 100 concurrent session level, when moving

to four dbservers from 128.70 to 1,113.50 packets per

second. With one dbserver, under a load of 200 concur-

rent sessions, there was a decrease in packet intensity

when moving to two dbservers from 104.04 to 36.73

packets per second respectively. However, when moving

from one dbserver to four dbservers under the same load,

there was an increase from 104.04 to 558.57 packets per

second respectively.

The load balanced model packet intensity peeked

at the 200 concurrent session load moving from one

dbserver to four dbservers. As a result, there was an in-

crease from 104.04 to 8,375.96 packets per second, which

was the highest recorded increase of any method. The

load balanced method showed a respective depreciated

increase in packet intensity from 4,653.96 to 8,375.96

packets per second under a load of 200 concurrent ses-

sions, when moving from two dbservers to four dbservers.

Clearly there was an increase in performance in

adding more dbservers in both the random and load bal-

anced models. With higher session load, the performance

increase was more dramatic in the sequential and substan-

tially notable in the load-balanced model.

CAN DISTRIBUTED DB PROVIDE AN EFFECTIVE MEANS OF SPEEDING WEB ACCESS TIMES

Journal of Information Technology Management Volume XVIII, Number 1, 2007

13

Performance Gain Among Different Alloca-

tion Methods

The highest average delay reduction reported oc-

curred under the load balanced method with a load of 200

concurrent sessions when moving from one dbserver to

four dbservers, delivering a reduction from 4.81 to 0.06

milliseconds. When testing the average delay, the load-

balanced method consistently demonstrated substantial

decreases when moving from one dbserver to two

dbservers and then to four dbservers under any load from

50 concurrent connections to 400 concurrent connections.

The random method, when moving from one

dbserver to two dbservers under a load of 200 concurrent

sessions, was attributed with the highest recorded delay

with an increase from 4.81 to 13.61 milliseconds. The

random method demonstrated a promising decrease in

average delay under a load of 100 concurrent sessions by

peaking with a reduction from 3.88 to 0.45 milliseconds

when moving from one dbserver to four dbservers.

The sequential method initially demonstrated a

decrease in average delay from 2.07 to 0.75 and to 0.39

milliseconds for a 50 concurrent connection model mov-

ing from one dbserver to two dbservers and then to four

dbservers respectively. The sequential model demon-

strated consistent decrease in average delay when moving

from one dbserver to two dbservers and to four dbservers

under any load from 50 to 200 concurrent connections.

The only exception occurred with 200 concurrent sessions

when moving from one dbserver to two dbservers, which

resulted in an increase in average delay from 4.81 to 5.19

milliseconds.

Impact of Client Intensity on Design Meth-

odology

Higher loads resulted in inconclusive over satura-

tion levels of server utilization. Noticeable difficulty was

observed when sustaining 800 concurrent sessions of net-

work requests originating from a single Siege client. Ad-

ditional Siege clients were utilized by distributing the

number of concurrent sessions evenly among the two

Siege clients. When adding additional Siege clients, it

was clear that the four dbserver model was not sufficient

to handle that number of requests, and servers would

cease functioning when their active process count rose

above 285 processes. Siege would pause for indefinite

periods of time when not enough query requests were ac-

knowledged. This had detrimental effects on the sequen-

tial and random models as the Siege client could not issue

new requests to available servers while waiting for ac-

knowledgment from saturated servers of prior requests

sent for processing. There appeared to be no immediate

saturation concerns with the main query distribution

server.

Server recovery time was also a noteworthy con-

cern. In most instances, it was not necessary to restart the

dbservers between test intervals. However, there appeared

to be a two to five minute blackout time when it was ad-

visable not to initiate additional siege queries upon com-

pletion of a previous test. The server had to reclaim re-

sources until it could resume a steady state. There were a

few tests where Siege would throw errors rather than per-

sist through each session for results. Occasionally, tests

were completed before the 100,000 packet goal was

reached. This indicated that one of the servers had en-

gaged a security policy and disabled the HTTP process.

Recommended Combination of Servers and

Query Distribution Method

Clearly the load-balanced method outperformed

the random and the sequential model. Recommended

enhancements to the test environment would include the

following two methods: (1) Doubling the dbservers from

four to eight, running two web servers, each serving dif-

ferent applications, dynamically allocating dbservers to

web server applications as needed, and then releasing the

dbserver to the other allocation servers when load in-

creases as web client demand increased; (2) increasing the

number of dbservers to 32 running, the load balanced

method, and testing each power of two using 2, 4, 8, 16,

and 32 dbservers under a load of 400, 800, 1600 concur-

rent connections. This is all the while using four to eight

Siege clients and distributing the concurrent sessions

among the Siege clients evenly.

Recommendations for Further Research

Modify the Test Apparatus and / or Method-

ology
Pretest each of the servers to determine if they

are performing within a tolerable level prior to each test.

This could be a 50 concurrent session test executed di-

rectly against each dbserver concurrently or successively.

Determine statistical variance between each of the loads.

Determine the cause of peek performance for the load-

balanced model to be at 200 concurrent sessions and then

reducing this cause when testing with 400 concurrent ses-

sions.

CAN DISTRIBUTED DB PROVIDE AN EFFECTIVE MEANS OF SPEEDING WEB ACCESS TIMES

Journal of Information Technology Management Volume XVIII, Number 1, 2007

14

Demonstrate Scalability by Increasing

Dbservers
It was clear, as the number of dbservers in-

creased there was a corresponding increase in perform-

ance. Determine the required load to maximize justifica-

tion for adding each additional dbserver. Ask: At what

point would it be advisable to add additional web servers

with segmented or dynamically allocated dbserver arrays?

Increase Client Intensity
Currently, one Siege client can generate enough

concurrent sessions to model 1600 clients distributed as

eight sets of 200 concurrent sessions within a five-minute

interval. Adding additional Siege clients and distributing

the load evenly between the two clients would acquire

additional client loads. Data can be collected on each

Siege client using TCPDUMP. The data would be inter-

preted and a unique port address would be assigned to

each session in order to enable session time and packet

throughput analysis.

Additional database nodes typically resulted in

increased performance. This was especially true when a

load-balanced algorithm was used. However, it would be

expected that at some level a point of diminishing returns

would be reached. The data collected herein does not ad-

dress that point. Additional research is needed to address

that question. Therefore, because only a small number of

nodes were used, this study was more significant in proto-

typing the process than in obtaining scaling data

REFERENCES

[1] Amiri, A. “A Coordinated Planning Model for the

Design of a Distributed Database System," Infor

mation Sciences, Volume 164, Numbers 1-4, 2004,

pp. 229-245.

[2] Anthes, G. “Grids Extend Reach," Computerworld,

Volume 37, Number 41, 2003, pp. 29-30.

[3] Cannataro, M., Talia, D. and Srimani, P. K. “Paral-

lel Data Intensive Computing in Scientific and-

Commercial Applications," Parallel Computing,

Volume 28, Number 5, 2002, pp. 673-704.

[4] Elnikety, S., Tracey, J., Nahum, E., and Zwaene-

poel, W. “A Method for Transparent Admission

Control and Request Scheduling in E-Commerce

Web Sites," Proceedings of the 13th International

Conference on World Wide Web, 2004, pp. 276-

286.

[5] Guster, D., Safonov P., Hall C., and Sundheim R.

“Using Simulation to Predict Performance Charac-

teristics of Mirrored Hosts Used to Support WWW

Applications," Issues in Information Systems, Vol-

ume 4, Number 2, 2003, pp. 479-485.

[6] Johnson, M. “Gridlock Reality," Computerworld,

Volume 37, Number 41, 2003, pp. 24.

[7] Jutla, D., Bodorik, P. and Wang, Y. (1999). “De-

veloping Internet E-Commerce Benchmarks," In-

formation Systems, Volume 24, Number 6, 1999,

pp. 475-493.

[8] Kanitkar, V. “Collaborative and Real-Time Trans-

action Processing Techniques in Client-Server Da-

tabase Architectures," Polytechnic University, Vol-

ume 61, Number 04B, 2000, pp. 2036.

[9] Kanitkar, V. and Delis, A. “Distributed Query

Processing on the Grid," IEEE Transactions on

Computers, Volume 51, Number 3, 2002, pp.269-

278.

[10] Li, W., Altintas, K. and Kantarcıolu, M. “On De-

mand Synchronization and Load Distribution for

Database Grid-Based Web Applications," Data and

Knowledge Engineering, Volume 51, Number 3,

2004, pp. 295-323.

 [11] Peddemors, A. J. H. and Hertzberg, L. O. “A High

Performance Distributed Database System for En-

hanced Internet Services," Future Generation

Computer Systems, Volume 15, Number 3, 1999,

pp. 407-415.

[12] Rajamani, K. “Multi-Tier Caching of Dynamic

Content for Database-Driven Web Sites”, Rice Uni-

versity, Volume 63, Number 03B, 2002, pp. 1433.

[13] Roussopoulos, N., Economous, N. and Stamenasm,

A. “A Testbed for Incremental Access Methods,"

IEEE Transactions on Knowledge and Data Engi-

neering, Volume 5, Number 5, 1993, pp.762-774.

[14] Simhaa, R. and Majumdarb, A. “An Urn Model

with Applications to Database Performance Evalua-

tion," Computers and Operations Research, Vol-

ume 24, Number 4, 1997, pp. 289-300.

 [15] Smith, J. “Distributed Query Processing on the

Grid," International Journal of High Performance

Computing Applications, Volume 17, Number 4,

2003, pp.353-367.

[16] Sobol, M. G., Kagan, A., and Shimura, H. “Per-

formance Criteria for Relational Databases in Dif-

ferent Normal Forms," Journal of Systems and

Software, Volume 34, Number 1, 1996, pp. 31-42.

 [17] Townsand, M. and Tsai, J. “Oracle 9i New Fea-

tures," Oracle Corporation, Redwood City, Cali-

fornia, 2003.

CAN DISTRIBUTED DB PROVIDE AN EFFECTIVE MEANS OF SPEEDING WEB ACCESS TIMES

Journal of Information Technology Management Volume XVIII, Number 1, 2007

15

[18] Wu, C. and Befford, G. G. “Improving the Flexibil-

ity for Replicated Data Management in Distributed

Database Systems," Computers and Industrial En-

gineering, 18th International Conference on Com-

puters and Industrial Engineering, 1996, pp. 901-

905.

[19] Xiong, M., Ramamritham, K., Haritsa, J. R. and

Stankovic, J. A. “MIRROR: A State-Conscious

Concurrency Control Protocol for Replicated Real-

Time Databases," Information Systems, Volume 27,

Number 4, 2002, pp. 277-297.

AUTHOR BIOGRAPHIES

Christopher Brown is a database architect in

the Information Technology Department at St. Cloud State

University. He earned a Master’s degree in Computer

Networking at St. Cloud State University and has been

active in research involving distributed database algo-

rithms and performance. He is also involved in research

related to data warehouse database design/performance.

Dennis Guster earned his Doctorate at the Uni-

versity of Missouri, St. Louis in 1981. He has 25+ years

teaching experience in higher education and has been Pro-

fessor in the Computer Science and Statistics Departments

before joining the Business Computer Information Sys-

tems Department at St. Cloud State University in 2001.

Dennis has served as a consultant and provided industry

training to organizations such as Compaq, NASA, DISA,

USAF, Motorola, and ATT. As Director of the Business

Computing Research Laboratory at SCSU he has organ-

ized numerous sponsored research projects and has pub-

lished in the areas of network design, network perform-

ance analysis, and computer network security. His re-

search interests include mathematical modeling and simu-

lation of computer information systems and networks. He

is an author of more than 50 papers in journals and con-

ference proceedings.

Sara Krzenski is a graduate student in the

graduate computer network management program at St.

Cloud State University. She is scheduled to complete that

Master’s degree Spring 2008 and has been active in re-

search involving distributed database performance. She is

also involved in research related to denial of service on

the network level.

