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ABSTRACT 

Software testing is indispensable in ensuring software quality. Traditionally, testing has been viewed as a separate 
and distinct stage at the end of the software development process. However, testing activities have evolved from the “code 
and fix” process of executing a piece of software in an attempt to find coding errors, to a collaborative coordinated effort with 
testing activities embedded throughout the entire software development life cycle.  The benefits of contemporary testing 
activities include: linking together of perspectives across the entire organization, development of a better software product 
with fewer errors, and reduced cost by avoiding or finding errors earlier in the development life cycle.  In spite of an 
emerging view that testing activities should be included early and throughout the software development process, there is little 
research in the area of how this can be accomplished.  This paper attempted to address this void by offering six models for 
engaging testers early and throughout the software development process.  It also carried out a simulation study with the in-
depth surveyed data from 13 software testing professionals, for the purpose of determining which of the six models would be 
best under different development environment circumstances. 
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INTRODUCTION 

As software is becoming critical to almost every 
organization, the art and complexity of software 
development has become a perennial topic of interest in 
both research and practice.  The practice of software 
development has evolved steadily from its beginning half 
a century ago, and numerous methods and models (e.g., 
life cycle models and agile methods) have been proposed 
to enhance its efficiency and effectiveness. Royce [31] is 
widely recognized for introducing the first formal 
methodology for software development, now known as 
the waterfall methodology.  Royce’s waterfall model 
introduced a sequential process that emphasized 
systematic development and divided software 
development processes into separate and distinct phases, 
including requirements analysis, program design, coding, 
testing, and operations. Royce’s model has been refined 
by organizations and researchers for decades, resulting in 
a vast number of waterfall model variations collectively 
referred to as the Software Development Life Cycle 
(SDLC) methodology.   

SDLC models represent a structured approach to 
software development which has been praised for 
providing necessary order and control for large complex 
projects, and criticized for being inflexible and time 
consuming.  Over the past four decades the SDLC models 
have been refined to cope with increasingly larger, 
collaborative, inter-organizational, and complex software 
development projects [2].  Today, new development 
models (e.g., progressive, iterative, and agile methods) 
have emerged and been proposed to tackle some of the 
criticisms of the SDLC methodology [36].  However, in 
spite of the seeming popularity of these new agile models 
and the persistent criticism of the SDLC, evidence 
suggests that the SDLC continues to be the preferred 
development methodology in contemporary organizations 
[2][21][22][30][36].  In fact, a recent Gartner study 
estimated that newer development methods such as agile 
development account for less than 15% of the software 
developed in organizations today [17]. 

Software testing is indispensable in ensuring 
software quality [7]. The inclusion of software testing 
activities in early waterfall models provided testament to 
the importance of testing a piece of software prior to its 
use within an organization.  However, these early models 
placed software testing activities at the end of a sequential 
structured process relegating software testing activities to 
a “code and fix,” or error finding approach [4].  Over 
time, it was recognized that the cost of finding an error 
after the development process had been completed was 

much more expensive than finding the error during the 
development process itself [3][4][5][13].  More recently, 
views on testing propose software testing activities as an 
integral part of the overall development life cycle 
[13][29][32] and view testing as more of a coordinated 
collaborative effort [6][19][20].  It has also been 
recognized that integrating software testing activities into 
earlier phases, if not all phases, of development provides 
benefits, including: appropriate time allocation and better 
scheduling of testing activities [28], more productive 
collaboration that links together all aspects of an 
organization that results in a better software product 
[6][20][27], improved project performance in terms of 
cost and cycle time [35], and cost savings by catching 
bugs earlier [3][5][37].   

In spite of this recognition, software testing 
activities have been slow to move from the end of the 
development life cycle and into all phases of the 
development process.  Relatively little research has been 
conducted in this area leaving a void in the current 
literature for the introduction and analysis of new formal 
models for engaging software testers early and throughout 
the software development life cycle.  In this paper, we 
attempt to address this void. Specifically, we address a 
major research question: How can testers be embedded in 
the software development life cycle to obtain the most 

beneficial testing results?  We address the question by 
first offering six formal models for engaging software 
testers early and throughout the software development 
process and then developing a simulation study with 
surveyed data from 13 software testing professionals, for 
the purpose of determining which of the six models would 
be best under different development environment 
circumstances.   

This paper proceeds as follows.  First, we 
provide a review of the software development and testing 
literature.  Then, we propose six formal models for 
engaging testers early and throughout the software 
development process. Next, we describe the development 
and the analysis of a simulation study to test the models 
using surveyed data from software testing professionals. 
Finally, we offer a brief conclusion. 

LITERATURE REVIEW 

The software development life cycle has a rich 
history in the IS research literature.  Research has 
illustrated the importance and evolution of the SDLC over 
the past four decades.  Each of the SDLC’s general phases 
(e.g., requirements, design, implementation, and testing) 
has evolved into individual research streams.  However, 
while requirements, design and implementation each have 
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been investigated extensively, research on testing 
activities has been less prevalent.  While more 
contemporary SDLC models emphasize the importance of 
embedding testing activities early and throughout the 
development life cycle, little research has been conducted 
in this area.   

In the following sections, we provide a review of 
the literature related to the SDLC and software testing 
activities to illustrate the co-evolution of both.  This 
literature review reveals a void in the current literature 
related to the development and analysis of formal models 
for embedding testing activities early and throughout the 
entire software development life cycle.   

Software Development Life Cycle 

The art of software development is a perennial 
topic that both researchers and practitioners have grappled 
with for decades.  Software development methodologies 
have evolved as a result.  In the 1950’s, there were only 
two steps in the software development process: an 
analysis step followed by a coding step [31]. Early 
systems development projects focused on hardware.  
Systems development was primarily dominated by 
engineers who tended to adopt linear processes that 
focused on hardware conservation, a philosophy 
consistent with the computing economics of the time.   A 
decade later, in the 1960’s, systems development 
processes began to change as people recognized that 
software was easier to modify than hardware and did not 
require expensive production environments to develop. 
The result was a shift toward a “code and fix” approach to 
development [4][25].  As organizational systems 
increased in complexity and numbers, the “code and fix” 
approach often resulted in unwieldy “spaghetti code” and 
frequent patches [3][4].  In reaction, the classic waterfall 
model was introduced by Royce in 1970 as an attempt to 
introduce structure and controls into the software 
development process.  

The widespread adoption of the waterfall 
methodology resulted in the evolution of a framework for 
software development that incorporated important 
organizational issues into the development process, such 
as incorporating the stakeholder perspective, emphasizing 
requirements analysis, and the importance of testing 
activities [27].  New models divided the development 
process into well-defined phases, typically including 
analysis, design, coding, testing, and implementation [23].  
Strict adherence and emphasis on the sequential nature of 
the SDLC phases persisted in the decades that followed, 
leading to a misinterpretation of the SDLC as an 
inflexible sequential process. This perspective was 

solidified in part by government process standards 
emphasizing a purely sequential interpretation of the 
model [4][24].   

In the decades following its introduction, the 
waterfall methodology has continuously evolved as 
organizations have adapted it to meet individual and 
context specific needs [2].  However, the SDLC continues 
to be frequently identified as inflexible, time consuming, 
and costly [30].  As a result, many new models of 
software development have emerged, including modified 
SDLC models, progressive, iterative, and agile 
development methodologies.   Interestingly, a search of 
the related research literature and professional journals 
would lead one to believe that the adoption of these newer 
methodologies were contributing to the quick demise of 
structured waterfall models [21].  However, current 
studies estimate that software developed using agile 
methods accounts for less than 15% of the software 
developed in organizations today [17], and that 
organizations continue to use traditional structured 
approaches for the majority of their development projects 
[2][21][22][30]. 

The stages of the SDLC have been refined over 
the past five decades.  More recent models have tweaked 
the granularity of the initial models; however, most 
continue to include the basic phases of planning (problem 
and scope identification, financial implications, strategy), 
analysis (determine user needs), design (system 
specification), implementation (new system development, 
installation, integration, testing and training), and finally 
maintenance (ongoing operations and improvements to 
software).  This general model is often refined and each 
of these phases made more or less granular, by breaking 
them into additional or fewer phases [18].  Many newer 
models break logical and physical design into two 
separate phases; some include testing as a separate phase.  
Other models emphasize business requirements, systems 
requirements, high-level logical design, detailed physical 
design, and implementation.  However, most newer 
models continue to place testing activities near the end of 
the sequential life cycle.   

The impact of software development teams on 
the quality and effectiveness of software products has 
been investigated in the research literature.  Research 
related to the impact of team size on software quality and 
effectiveness has investigated coordination efforts and 
cost as well as communication issues. Results reveal that 
increasing team size does not necessarily increase costs 
and if effectively managed can improve outcomes 
[11][14][26].  Investigation into the coordination of 
project team members illustrated the need to create a 
standard understanding among developers, testers, and 
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managers to achieve quality software [6][9].  Research 
also reveals that effective coordination, or management, 
of team members’ expertise (knowledge management) 
positively impacts outcomes [10].  Early models proposed 
that effective quality controls for software development 
required a division of labor and responsibilities across 
developers and testers, reinforcing the notion that testing 
activities should be isolated and conducted at the end of 
the development process.  Dahlbom and Mathiassen [8] 
supported this notion by proposing that independence is 
required between developers and testers in order to avoid 
self deception in having developers evaluate their own 
work.  However more recently, it has been suggested that 
different individuals on a team can have different goals 
and responsibilities, resulting in mutual interdependence, 
and allowing for the benefits of collaboration among team 
members throughout the entire process [6].   More 
contemporary models suggest that the benefits of testing 
early and often place less emphasis on independence and 
division of labor [4][6][13][27][34][36][37].  In spite of 
this changing philosophy regarding testing activities, 
current research has not explored the development of new 
formal models for embedding testing activities throughout 
the life cycle.  This void provides an opportunity for 
researchers to develop formal testing models that analyze 
the impacts of embedding testers over the development 
life cycle.    

Software Testing 

One of the most significant criticisms of 
traditional structured SDLC methodologies is the 
placement of testing activities at the end of the 
development life cycle.  Early definitions of testing 
describe testing as simply being “the process of executing 
a program with the intent of finding errors” [25, p. 16].  
The placement of testing activities at the end of the life 
cycle often results in increased cost associated with 
software development [3][34] as “finding and fixing a 
software problem after delivery is often 100 times more 
expensive than finding and fixing it during the 
requirements or design phase” [5, p. 135].  Relegating 
testing activities to a “hand-off” activity at the end of the 
development process can result in a number of problems, 
including: poor planning and tight schedules for testing 
work leaving too little time to fix code and design flaws 
[6][13], and negatively impacting decisions determining if 
software products meet requirements given there is not 
enough time to systematically search, judge requirements 
satisfaction, or determine when and how to stop testing 
activities [6][15].   

Contemporary views of testing emphasize testing 
as prevention rather than correction.  Hetzel [16] was the 
first to illustrate this trend with his definition of software 
testing as activities aimed at evaluating the capability of a 
system and determining if the system meets the 
documtented organizational and user requirements.  In 
addition, Gelperin and Hetzel [13] captured the evolution 
of testing by classifying the history of testing activities, 
including: debugging-oriented testing (until 1956), 
demonstration-oriented (1957-1978), destruction-oriented 
(1979-1982), evaluation-oriented (1983-1987), and 
prevention-oriented (1988-).  This classification 
illustrated a slow but continuous trend of software testing 
slowly emerging to more importance in the development 
process itself. 

In the 1990’s, new concepts of software testing 
as part of the overall software development life cycle 
started to emerge.  Dalal et al. [9] captured this new view 
of embedding software testing as an integral part of every 
stage of the development life cycle, and considered 
software testing as a coordinated effort that is part of the 
overall software engineering process.  Software testing 
was identified as an important part of a cooperative 
process where multiple actors (testers, designers, 
programmers, etc.) link together different parts of an 
organization to accomplish a collective set of tasks over 
the entire life cycle [6][20].  Software testing activities 
were no longer an error finding activity after the fact, but 
were seen as prevention activities that not only reduced 
cost but improved the quality of the software that was 
developed [35]. 

The introduction of formal software development 
methodologies, such as the waterfall method, established 
clearly defined phases of software development and 
testing activities were decidedly at the end of this 
sequential process [4][31].  The emphasis on coordinated 
efforts brought attention to this placement that often 
resulted in software testing actitives being the poorest 
planned part of the development process resulting in less 
effective results than could be realized if software testing 
were moved earlier in the development life cycle. 

More contemporary views of testing emphasize 
the importance of integrating testing activities into each 
phase of the overall development life cycle [6][9][13][36].  
Pyhäjärvi and Rautiainen [29] argue that testing is “an 
integral activity in software development” and 
recommend that “testing should be included early in 
software development” (p. 33). Schach [32] also suggests 
that “testing should be performed throughout the software 
life cycle” (p. 277) and predicts that “the future role of 
testing will be to prevent faults rather than to detect them” 
(p. 278). Several empirical studies have shown that 
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engaging testers earlier and throughout the software 
development process is beneficial to a project team’s 
performance. Waligora and Coon [35] present 
quantitative evidence that, by starting testing earlier in the 
development life cycle, project performance, in terms of 
cost and cycle time, is improved without sacrificing the 
overall quality of the end product. As today’s 
organizational environment rapidly evolves into an 
increasingly networked environment of outsourcing 
relationships, alliances, and partnerships; the demand for 
cooperative, collaborative, and interpersonal testing 
activities is emerging [6][27].   

Current research does not offer formal models 
for embedding testing activities early and throughout in 
the software development life cycle.  In the following 
section, we describe the development of six formal 
models, based on our experiences and the existing 
literature related to software development and testing. 

SIX MODELS FOR ENGAGING 

TESTERS EARLY AND 

THROUGHOUT THE SOFTWARE 

DEVELOPMENT PROCESS 

As captured by the literature review described in 
the previous section, the SDLC has been widely used and 
researched over the past several decades.  As a result, 
there is not a single SDLC model that serves as the 
standard model.  Researchers and organizations have 
adjusted the granularity of phases and have also 
reorganized the activities included in each phase.  
Therefore, it is necessary for us to define the SDLC 
model that will be used in this project.  We adhere to 
generally accepted SDLC phases and activities that have 
persisted in the literature across the decades.  For the 
purposes of this project, we will define five software 
development process phases or stages, as follows:  

• Business Requirements: The set of 
specifications of what the business unit 
expects the application to accomplish. 

• Systems Requirements: The systems 
analysis stage in which the business 
requirements are translated into graphical 
formats that show processes and data flows. 

• High-Level Design: The specification of the 
code modules and their functions, and the 
flow of data among the code modules. 

• Detailed Design: The design of the functions 
within each code module. 

• Implementation: The programming of each 
code module. 

Having established a software development 
process framework with which to work, we now turn to 
the nature of the participation of the testers at each 
software development process stage.  This concept can be 
broken down into two possibilities, as we noted earlier, 
one or both of which can be practiced.  One, which is 
applicable at all of the stages, is the idea of testing the 
output of the stage.  Do the requirements make sense, do 
they meet a set of accepted standards, and what are those 
standards?  Do the diagrams that result from the systems 
analysis stage flow correctly and make sense?  Have the 
systems analysis diagrams been constructed to meet 
accepted standards and what are those standards?  Are the 
program design specifications and the database design 
acceptable? 

The second possibility regarding the nature of 
the participation of the testers is directed toward the 
creation of systems that will lend themselves to being 
more easily and effectively tested.  This would begin in 
the systems analysis stage and significantly impact the 
systems design stage.  This could have profound 
implications in systems testing, in streamlining the 
process in general, and in specifics such as determining 
the test datasets to use. 

There are a number of factors to consider in 
formulating a model to use in integrating testers into the 
application development team and process.  An initial 
factor is whether a company believes there is value in 
embedding testers at all levels of the software 
development process.  As we have stated, we believe that 
the arguments for doing so are compelling and so for our 
purposes we will assume that this is the case. 

Assuming there is significant value in 
embedding testers earlier in the software development 
process, one factor in deciding which model to use is the 
skill set of the individuals in the testing department or 
organization.  We will assume that any tester assigned to 
represent the testing organization in an application 
development project is skilled in testing in at least one of 
the application development stages.  This can even be 
extended back into the education and training 
backgrounds of the individuals.  It is as difficult to 
imagine a tester without a business background leading a 
business requirements review, as it is imagining a tester 
without a programming background leading a code 
review.  Pursuing this further, the Tester Embedding 
Model chosen will also depend on whether the company’s 
testers tend toward breadth of skill or depth of skill.  Are 
the individual testers expected to have skills that range 
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from business to technical skills or are their skill sets 
expected to be narrowly focused? 

Another factor is the amount of resources the 
company is willing to invest in testing.  This certainly will 
depend on the company’s commitment to testing and on 
the size of the application development project.  
Generally, in this regard, more would seem to be better; 
however, even a company that takes testing seriously 
would not want to overwhelm the application 
development teams with testers. 

With the previous discussion as background, we 
propose six “Tester Embedding Models” for embedding 
testers early and throughout the software development 
process. 

Model 1: “The Single Tester Model” 

As the name implies, in The Single Tester 
Model, one tester is assigned to an application 

development project and stays with it through all of its 
stages (see Figure 1).  This has the advantage of 
continuity as one person begins learning about the project 
from the very beginning of the business requirements 
phase and continues building her project knowledge 
through each successive stage.  The disadvantages of this 
model include a project over dependency on one person 
and the expectation that the one person must be well-
versed in a breadth of skills ranging from requirements 
analysis to systems design and programming.  Assuming 
you can find such a person, if she gets sick or leaves the 
company, the project is left in the lurch.  And, if The 
Single Tester Model is attempted without a sufficiently 
broadly skilled tester, then clearly the principle of having 
strong testing expertise at each development stage will 
have been defeated. 

 

 
 

Figure 1: The Single Tester Model 
 

 

Model 2: “The Specialist Model” 

If The Single Tester Model is one extreme, then 
The Specialist Model is the other extreme.  In The 

Specialist Model, a different, highly specialized tester 
works on the application development project in each of 
its stages (see Figure 2).  Presumably, each tester is a true 
expert in the work being done at their particular 
development stage and thus the advantage is the level of 
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testing expertise that can be applied at each stage.  
Conversely, each tester does not have to possess a broad 
skill base.  However, there are some disadvantages as 
well.  One disadvantage is that each Specialist must learn 
the nature and details of the project when they cycle onto 

the project.  Another disadvantage is the lack of 
communication between the testers in the different stages.  
Indeed, it is this lack of communication that inspires 
certain aspects of the next four models. 

 

 
 

Figure 2: The Specialist Model 
 

 

Model 3: “The Leapfrog Model” 

The Leapfrog Model is designed to overcome 
some of the problems associated with both The Single 
Tester Model and The Specialist Model (see Figure 3).  
The Leapfrog Model begins with Tester A, who is a 
requirements testing specialist, working on the Business 
Requirements stage.  Tester A continues working on the 
project in the Systems Requirements stage, where she is 
joined by Tester B, whose expertise is more geared 
towards systems analysis and high-level systems design.  
As both Testers A and B work on the Systems 
Requirement stage, Tester A is able to gradually transfer 
her project knowledge to Tester B.  At the end of the 
Systems Requirements stage, Tester A leaves the project.  
At the beginning of the High-Level Design stage, Tester 
B is joined by Tester C, whose expertise is focused on 

both high-level and detailed systems design.  Similarly, at 
the end of the High-Level Design stage, Tester B leaves 
the project and at the beginning of Detailed Design stage, 
Tester C is joined by Tester D, whose expertise is focused 
on detailed program design and programming.  Tester C 
leaves the project at the end of the Detailed Design stage.  
An advantage of The Leapfrog Model includes having 
two testers working on each development stage except for 
the first and last stages.  At each of the intermediate 
stages there is the opportunity for one tester to gradually 
transfer her project knowledge to the next tester.  
However, as with The Specialist Model, The Leapfrog 
Model assumes the availability of a stable of relatively 
specialized testers and, with two testers involved at each 
of the intermediate stages, it is even more resource 
intensive. 
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Figure 3: The Leapfrog Model 
 

 

Model 4: “The Balanced Bifurcated Model” 

In the Balanced Bifurcated Model, there are two 
testers, A and B (see Figure 4).  Tester A has a broadly-
based systems analysis background that extends to 
requirements on the one end and to high-level systems 
design on the other.  Tester B has a programming 
background that includes the higher levels of systems 
design.  In this model, Tester A begins at the Business 
Requirements stage and stays with the project through the 
High-Level Design stage, after which she leaves the 
project.  Tester B joins the project at the High-Level 
Design stage and continues with it to its conclusion in the 
Implementation stage.  With both Testers A and B 
working together in the High-Level Design stage, they 
have the opportunity to transfer project knowledge from 
A to B.  Their skill bases must be broader than those of 
the testers in either The Specialist Model or the Leapfrog 
Model, but not as broad as the testers in The Single Tester 
Model.  While there is a shift back toward the problem of 
over-dependence on individuals as in The Single Tester 

Model, there is also not as much of a resource drain as in 
either The Specialist Model or the Leapfrog Model. 

Model 5: “The Top-Loaded, Unbalanced 

Bifurcated Model” 

The difference between The Balanced Bifurcated 
Model and the two Unbalanced Bifurcated Models is the 
point of hand-off of responsibilities.  The principle of the 
Top-Loaded, Unbalanced Bifurcated Model is that one 
tester, Tester A, will work with all aspects of the project 
through and including the Detailed Design stage (see 
Figure 5).  Then, Tester B will join her in the Detailed 
Design stage and be responsible for testing in the 
Implementation stage.  This model heightens the 
personnel dependency issue, plus Tester A must be very 
broadly based.  The clear advantage of this model is it 
provides specialized testers whose sole purpose and total 
focus is to look at the detailed design and then work in the 
highly technical pursuit of code testing. 
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Figure 4: The Balanced Bifurcated Model 
 

 

 
 

Figure 5: The Top-Loaded, Unbalanced Bifurcated Model 
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Model 6: “The Bottom-Loaded, Unbalanced 

Bifurcated Model” 

In the Bottom-Loaded, Unbalanced Bifurcated 
Model, the point of hand-off is the Systems Requirements 
stage (see Figure 6).  That is, Tester A handles the 
Business Requirements stage and the Systems 
Requirements stage.  He is joined in the Systems 
Requirements stage by Tester B who begins working in 

this stage and then follows the project to its conclusion in 
the Implementation stage.  In many structural respects it is 
similar to The Top-Loaded, Unbalanced Bifurcated 
Model, except that now, one tester, Tester A, is focused 
on business requirements, and the other tester, Tester B, 
begins with system requirements and then proceeds 
through both of the design stages and the implementation 
stage. 

 

 
 

Figure 6: The Bottom-Loaded, Unbalanced Bifurcated Model 
 
 
There are two possible considerations that could 

lead to variations in some or all of Models 1-6.  One is 
that as a practical matter, depending on the size of the IT 
organization, the scope of the development project, and 
the company’s dedication to testing, the testers described 
in any of the six models may well serve as “test leads” 
and bring additional testing personnel into the application 
development process as required.  In all cases, this could 
obviously be simply a matter of handling the volume of 
work at hand.  Also, in all cases, this decreases the 
dependency on only one or two people at any given 
development stage.  Naturally, it also increases the 
amount of resources expended in testing.  In addition, in 
Model 1, The Single Tester Model, and to a lesser extent 
in Models 4, 5, and 6, the three bifurcated models, it 

could involve calling in specialists to supplement the 
skills of the test leads in those models. 

The other consideration has to do with the 
overlap between the testers at the various intermediate 
stages of development.  Models 1 and 2 have no overlap.  
If we eliminate the overlap in Model 3, The Leapfrog 
Model, it effectively reverts to Model 2, The Specialist 
Model.  The issue is whether in Models 4, 5, and 6, the 
three bifurcated models, the overlap could be eliminated.  
This has the advantages of reducing the expenditure of 
resources and of not requiring the testers to be quite so 
broad in their skill sets.  On the other hand, there will 
clearly be a cost in losing the transfer of project 
knowledge from one tester to the next that is provided by 
the overlap.  Perhaps the elimination of the overlap is 
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most appealing in Model 5, the Top-Loaded, Unbalanced 
Bifurcated Model.  Eliminating the overlap in Model 5 
would isolate Tester B who is responsible for code 
testing.  Historically, this responsibility has in many 
organizations been the only real job for testers.  Even in 
those instances in which testing is embedded early and 
throughout the software development process, the nature 
of code testing and its specific and highly technical 
techniques make it a candidate for being largely separable 
from the other software development process stages.  In 
fact, as a practical matter in today’s IT environment, code 
testing can be looked upon as a candidate for outsourcing, 
which would fit the variation that we might now call the 
Unbalanced Bifurcated Model Without Overlap. 

SIMULATIONS OF THE SIX 

TESTER EMBEDDING MODELS 

Simulation Background 

One of the most widely-used tools in analysis 
today is simulation. Simulation is “the process of 
designing a model of a real system and conducting 
experiments with this model for the purpose of 
understanding the behavior of the system and/or 
evaluating various strategies for the operation of the 
system” [33, p. 7]. Some have argued that simulation is 
indispensable as a means of approaching and solving real-
world problems [1][12]. The fundamental goal in 
simulation is to mimic the essential elements involved in 
a process.  A simulation model is very user-friendly, in 
the sense that the components of the simulation reflect 
actual components of the process being modeled.  
Consequently, simulations are extremely robust.  
Simulations allow for the collection of data at all stages of 
the process, so hidden factors might be easily revealed.  
And the most appealing attribute of simulation is the 
“what if..?” capability.  That is, the user has the ability to 
alter conditions in the model, identify how the changes 
influence the outcomes, and project that same behavior to 
the real-world.  Once the fundamental model is in place, 
the potential for investigating these alternative scenarios 
is practically limitless. 

Within the context of software testing, the 
progress of the development of a piece of software from 
conception to completion is a good example of the use of 
simulation.  From the model development standpoint, 
there may be components in the simulation that mimic 
contributors at every stage (business requirements, 
systems requirements, high-level design, and detailed 
design) and processes developed that show how these 
various factors interact and influence the quality of the 

final implementation.  From the quality standpoint, we 
may capture the testing layer, and show how the 
performance of the various testers embedded throughout 
product development ultimately and collectively influence 
the final product. 

The “what if?” standpoint is often the most 
significant element of a simulation.  For example, a 
simulation model can be developed to show how a change 
in testing strategy (e.g., single-tester vs. specialist) can 
influence both costs and product quality.  If we can 
understand the system better, we can make decisions on 
the front end of the suitability of a particular tester 
framework in a particular set of development environment 
circumstances. 

While econometric and statistical models have 
capabilities to capture and explain some very basic 
relationships, they lack the capability to address detailed 
relationships within the process.  For either of these 
models, it is extremely difficult to reveal the nature of 
interactive relationships (e.g., “How do certain business 
requirements influence the quality of the product when a 
bifurcated testing system is used?”).  Compounding this, 
as econometric and statistical models increase in 
complexity, their comprehensibility declines - the model 
becomes less understandable to the original user, and 
consequently, less defensible. 

In summary, the fundamental value of a 
simulation lies in these three characteristics: 

• Dynamic: a simulation truly mimics the real-
world process itself, allowing for in-depth, 
yet understandable modeling. 

• Interactive: a simulation allows the user to 
capture the impact of complex relationships. 

• “What if?”: a simulation allows the user to 
“witness” the impact of a change in 
conditions, within the computer, rather than 
an expensive, impractical, real-world test. 

The key to simulating the alternative testing 
environments is understanding the system components 
and their attributes, and how those attributes interact.  
Some of those basic components and their attributes are 
the software length, complexity, and number of 
programmers required.  In addition, there is the 
experience and expertise of the tester, and the nature of 
the testing environment (i.e., the variations expressed in 
the six tester engaging models).  Finally, there are the 
issues surrounding the errors to be found in the testing, 
such as their location, their severity, and the period at 
which they were introduced (business requirements, 
systems requirements, high-level design, detailed design, 
and implementation.) 
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Scenario Analysis 
Empirical data on the employment and 

evaluation of software testing is sparse. As a result, we 
elected to rely on a combination of survey considerations 
and special case analysis. Given the phased structure of 
software development, in order to do some comparative 
analyses, we chose three test scenarios: 

• Error rates based on surveyed expectation 
o This scenario considers user 

experiences, and hence provides a 
reasonable basis for an initial evaluation 

• Error rates decreasing by phase 
o This scenario captures the worst-case 

environment, particularly if such errors 
are not recognized immediately 

• Error rates evenly distributed over each 
phase 
o By assuming errors occur evenly 

throughout the development process, 
this scenario gives an “average-case” 
study, the results of which can be 
analyzed against the other two scenarios 

Given an error within the code, the next step in 
the process is to discern the point at which the error is 
caught and corrected. This is the point at which the 
various testing strategies will affect performance. Again, 
survey results were used to determine the likelihood of 
recognizing a particular type of error at a given test stage. 
With this combination of scenarios, we will be able to 
show how the various testing schemes influence the 
development and testing process, as well as the final 
product quality and cost. 

A Survey of Software Testing Professionals 

(Error Rates): An initial data set is required for all 

simulation programs.  We supplemented information from 
the literature with data collected from a survey of 13 
software testing professionals in order to develop an 
initial data set for the simulation.  The addition of 
surveyed data provides a more robust initial data set for 
our simulation than relying on the literature alone.   

In developing the initial data set, we surveyed 13 
software testing professionals.  Information related to the 
individuals who completed the survey was kept 
anonymous and the results of the surveys were kept 
confidential. Each of the 13 individuals who completed 
the survey had over 10 years of testing experience. 

One of the survey questions we asked the 
participants was the likely location of software errors. 
This provided a basis for a “representative” environment 

to investigate. In this scenario, the likelihood of an error 
occurring at each stage was estimated to be: 

• Business Requirements: 56% 

• Systems Requirements: 19% 

• High-Level Design: 9% 

• Detailed Design: 4% 

• Implementation: 12% 
Our simulation involved 250 replications.  That 

is, based on the above distribution, we created 250 
software “cases,” with each containing an error at some 
level of the development. 

The simulation then proceeded to identify the 
error.  The likelihood of identifying an error at each phase 
was a function of that phase, and the phase in which the 
error was created.  This leads to a matrix of values, P, 
where Pij is the probability of finding an error created in 
phase i during phase j, when j ≥ i; 0, when j < i. 

The matrix P was created, based on the survey of 
13 software development experts.  Note in particular that 
the P matrix is a function of the testing environment.  
Each of the six models evaluated would promulgate a 
different value for the Pij’s.  This is the essence of our 
analysis – to investigate the effectiveness of error 
recognition for each of three test scenarios, given a 
particular testing scheme.  The diverse nature of the three 
scenarios, along with the varied impacts of testing 
schemes will be revealed in the simulation results.   

The evaluation framework is at two levels: 
Macro View and Conditional View. The Macro View 
indicates, for each Model, the percentage of errors 
identified at each phase.  Note that this then is a function 
of both the error generation scheme as well as the Model.  
As such, we may compare Model performances within a 
given error generation environment, and provide analysis 
on the relative merits of each Model. Since the analysis is 
performed on three variant error generation schemes, one 
may also recognize the manner in which the anticipated 
error environment might influence the choice of a tester 
Model.   

The Conditional View of evaluation answers a 
slightly different, more focused question: Given an error 
occurs in Phase i, what is the expected proportion 
discovered in Phase j? Again, this is a function of the 
Model itself, and provides a deeper insight into the value 
of the various tester set-ups.  In particular, a cost-benefit 
analysis could be applied to determine the preferred 
strategy to employ. 

The baseline case, which used only data 
provided by those surveyed results in Table 1, indicates 
the probability of errors located in each phase, for each of 
the six models tested. 
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Table 1: Distribution of Recognition Location by Testing Model - Baseline Study 
 

  Testing Model 

  MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 MODEL6 

1 0.144 0.14 0.104 0.096 0.096 0.104 

2 0.268 0.276 0.236 0.268 0.352 0.324 

3 0.296 0.268 0.328 0.348 0.264 0.324 

4 0.212 0.228 0.244 0.196 0.228 0.188 

Phase of 
recognition 

5 0.08 0.088 0.088 0.092 0.06 0.06 

 
Note in particular the highlighted values, which 

indicate the maximum value in each row.  This suggests 
that MODEL1 was more likely to recognize an error in 
the first phase, while MODEL5 was more likely to 
identify those problems in phase 2.  Such information 
would be very important in deciding which testing model 
to implement.  This would primarily involve a cost-
benefit analysis.  If the cost of not recognizing an error 
until later phases were very high – indicating significant 
re-work or redevelopment, then MODEL1 or MODEL5 
would be preferable, since they identify errors earlier in 
the process.  Note that each of the models was evaluated 
with respect to the same 250 simulated replications. 

In addition to the summary table above, we also 
collected the following statistics, indicating the proportion 
of errors found in each phase, conditioned on the location 
in which the error originated (see Table 2).  Note that this 

information takes into account the surveyed distribution 
of where the error is located along with the P matrix 
mentioned above – which was also survey-generated. 

Such information allows us to further pinpoint 
the efficacy of each testing Model, with respect to the 
error profile.  For example, suppose that our company is 
prone to making errors at Phase 1, Business 
Requirements. (This is the profile of this simulation, in 
which 59% of all errors originate in Phase 1.)  MODEL3 
tends to identify these errors prior to Implementation, 
with only 1% of our trials not being recognized 
beforehand.  All other models allowed two to three times 
as many cases to reach Implementation.  This suggests 
that MODEL3 might well be the testing model of choice 
if it is vital to avoid problems at Implementation, resulting 
from Business Requirements errors. 

 

Table 2: Detailed Phase-based Error Recognition - Baseline Study 
 

MODEL  Probability (error is recognized in…) 

MODEL1  1 2 3 4 5 

1 0.23 0.30 0.28 0.16 0.02 

2 0.00 0.24 0.39 0.31 0.07 

3 0.00 0.00 0.33 0.50 0.17 

4 0.00 0.00 0.00 0.20 0.80 

Given 
error 
made  
in… 

5 0.00 0.00 0.00 0.00 1.00 

MODEL2  1 2 3 4 5 

1 0.21 0.38 0.23 0.15 0.02 

2 0.00 0.18 0.38 0.29 0.15 

3 0.00 0.00 0.17 0.58 0.25 

4 0.00 0.00 0.00 0.17 0.83 

Given 
error 
made  
in… 

5 0.00 0.00 0.00 0.00 1.00 

MODEL3  1 2 3 4 5 

1 0.18 0.32 0.32 0.17 0.01 

2 0.00 0.21 0.33 0.35 0.11 

3 0.00 0.00 0.28 0.44 0.28 

4 0.00 0.00 0.00 0.00 1.00 

Given 
error 
made  
in… 

5 0.00 0.00 0.00 0.00 1.00 

MODEL4  1 2 3 4 5 

1 0.19 0.35 0.28 0.17 0.02 

2 0.00 0.24 0.40 0.29 0.06 

3 0.00 0.00 0.41 0.36 0.23 

4 0.00 0.00 0.00 0.60 0.40 

Given 
error 
made  
in… 

5 0.00 0.00 0.00 0.00 1.00 

MODEL5  1 2 3 4 5 

1 0.17 0.30 0.31 0.18 0.03 

2 0.00 0.24 0.32 0.33 0.12 

3 0.00 0.00 0.21 0.57 0.21 

4 0.00 0.00 0.00 0.71 0.29 

Given 
error 
made  
in… 

5 0.00 0.00 0.00 0.00 1.00 

MODEL6  1 2 3 4 5 

1 0.18 0.34 0.33 0.12 0.03 

2 0.00 0.28 0.42 0.24 0.05 

3 0.00 0.00 0.21 0.38 0.42 

4 0.00 0.00 0.00 0.25 0.75 

Given 
error 
made  
in… 

5 0.00 0.00 0.00 0.00 1.00 
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Another significant result is in comparing 
MODEL5 and MODEL6.  Suppose that an error is 
introduced in Detailed Design.  MODEL5 is almost three 
times as likely to identify that error immediately, while 
MODEL6 will generally not recognize that error until 
Implementation. 

Balanced Error Rates: In this second case, we 

altered the error origination probabilities, suggesting that 

the likelihood of an error occurring at each stage would 
be: 

• Business Requirements: 20% 

• Software requirements: 20% 

• High-Level Design: 20% 

• Detailed Design: 20% 

• Implementation: 20% 
 
The summary probabilities are shown in Table 3. 
 

Table 3: Distribution of Recognition Location by Testing Model - Balanced Error Study 
 

  Testing Model 

  MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 MODEL6 

1 0.048 0.032 0.04 0.028 0.036 0.024 

2 0.16 0.116 0.136 0.228 0.14 0.184 

3 0.248 0.292 0.276 0.236 0.256 0.244 

4 0.296 0.312 0.332 0.32 0.352 0.34 

Phase of 
recognition 

5 0.248 0.248 0.216 0.188 0.216 0.208 

 
We again highlight the maximum value in each 

row, indicating the Model most likely to recognize an 
error at that phase.  Two perspectives are noteworthy.  We 
may, at this point, compare the same MODEL over this 
scenario and the previous one.  For instance, note that 
MODEL1 recognized 14% of the errors in Phase 1, for 
the first scenario, and roughly 5% in this scenario.  This 
result reflects both the capabilities of the testing Model, as 
well as the error environment. 

The second perspective, as before is in 
comparing two models.  If we have a fairly good 
understanding of whether the origin of errors follows the 
first scenario or the second, we would be in a better 
position to select the appropriate testing model.  In this 
scenario for instance, MODEL4 recognizes 3-6% more 
errors prior to Implementation than any other model. 

We again created the conditional matrices, 
indicating the likelihood of locating an error, given the 
origin.  Again, it is noteworthy to compare to the previous 
scenario.  For example, suppose that your company 
consistently employed MODEL6, but did not have a good 
idea of the distribution of error occurrences.  If we 
compare Table 2-MODEL6 and Table 4-MODEL 6, we 
will notice a significant change in performance with 
respect to identifying problems prior to Implementation.  
For errors originating in Phase 1, the two scenarios are 
comparable (3% vs. 2%).  The same is true for errors 
originating in Phase 2 (5% vs. 6%).  However, for errors 
originating in Phase 3, the results are significantly 
different (42% vs. 14%).  Likewise for errors in Phase 4 

(75% vs. 52%).  We may use this information to promote 
consideration of some alternative to MODEL6 if we 
believe more errors are likely in Phases 3 or 4 because the 
delay of recognizing them in Implementation is 
expensive. 

Declining Error Rates: In this third case, we altered 

the error origination probabilities, suggesting that the 
likelihood of an error occurring at each stage would be: 

• Business Requirements: 40% 

• Software requirements: 30% 

• High-Level Design: 10% 

• Detailed Design: 10% 

• Implementation: 10% 
In this scenario, we suggest that errors tend to be 

front-loaded, that is more likely to occur early in 
development.  The summary probabilities are shown in 
Table 5, and the detailed probabilities are shown in Table 
6.  
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Table 4: Detailed Phase-based Error 
Recognition - Balanced Error Study  

 

MODEL  Probability (error is recognized in…) 

MODEL1  1 2 3 4 5 

1 0.21 0.19 0.31 0.21 0.07 

2 0.00 0.28 0.47 0.18 0.08 

3 0.00 0.00 0.27 0.46 0.27 

4 0.00 0.00 0.00 0.56 0.44 

Given 
error 
made  
in… 

5 0.00 0.00 0.00 0.00 1.00 

MODEL2  1 2 3 4 5 

1 0.18 0.30 0.30 0.20 0.03 

2 0.00 0.22 0.30 0.33 0.15 

3 0.00 0.00 0.29 0.51 0.20 

4 0.00 0.00 0.00 0.33 0.67 

Given 
error 
made  
in… 

5 0.00 0.00 0.00 0.00 1.00 

MODEL3  1 2 3 4 5 

1 0.13 0.32 0.32 0.16 0.07 

2 0.00 0.24 0.47 0.18 0.11 

3 0.00 0.00 0.36 0.47 0.17 

4 0.00 0.00 0.00 0.49 0.51 

Given 
error 
made  
in… 

5 0.00 0.00 0.00 0.00 1.00 

MODEL4  1 2 3 4 5 

1 0.15 0.36 0.33 0.09 0.07 

2 0.00 0.22 0.42 0.30 0.06 

3 0.00 0.00 0.28 0.47 0.25 

4 0.00 0.00 0.00 0.48 0.52 

Given 
error 
made  
in… 

5 0.00 0.00 0.00 0.00 1.00 

MODEL5  1 2 3 4 5 

1 0.30 0.21 0.23 0.19 0.06 

2 0.00 0.24 0.34 0.34 0.08 

3 0.00 0.00 0.34 0.52 0.14 

4 0.00 0.00 0.00 0.69 0.31 

Given 
error 
made  
in… 

5 0.00 0.00 0.00 0.00 1.00 

MODEL6  1 2 3 4 5 

1 0.13 0.34 0.30 0.21 0.02 

2 0.00 0.20 0.46 0.27 0.06 

3 0.00 0.00 0.33 0.52 0.14 

4 0.00 0.00 0.00 0.48 0.52 

Given 
error 
made  
in… 

5 0.00 0.00 0.00 0.00 1.00 

 

Table 6: Detailed Phase-based Error 
Recognition – Declining Error Study 

 

MODEL  Probability (error is recognized in…) 

MODEL1  1 2 3 4 5 

1 0.24 0.32 0.23 0.15 0.06 

2 0.00 0.22 0.32 0.29 0.18 

3 0.00 0.00 0.32 0.38 0.30 

4 0.00 0.00 0.00 0.86 0.14 

Given 

5 0.00 0.00 0.00 0.00 1.00 

MODEL2  1 2 3 4 5 

1 0.21 0.32 0.29 0.13 0.06 

2 0.00 0.25 0.28 0.30 0.16 

3 0.00 0.00 0.16 0.48 0.35 

4 0.00 0.00 0.00 0.64 0.36 

Given 
error 
made  
in… 

5 0.00 0.00 0.00 0.00 1.00 

MODEL3  1 2 3 4 5 

1 0.15 0.29 0.33 0.19 0.04 

2 0.00 0.20 0.46 0.23 0.11 

3 0.00 0.00 0.53 0.33 0.15 

4 0.00 0.00 0.00 0.25 0.75 

Given 
error 
made  
in… 

5 0.00 0.00 0.00 0.00 1.00 

MODEL4  1 2 3 4 5 

1 0.19 0.37 0.33 0.10 0.01 

2 0.00 0.24 0.37 0.30 0.10 

3 0.00 0.00 0.34 0.48 0.17 

4 0.00 0.00 0.00 0.50 0.50 

Given 
error 
made  
in… 

5 0.00 0.00 0.00 0.00 1.00 

MODEL5  1 2 3 4 5 

1 0.22 0.26 0.30 0.18 0.04 

2 0.00 0.18 0.47 0.28 0.07 

3 0.00 0.00 0.20 0.57 0.23 

4 0.00 0.00 0.00 0.64 0.36 

Given 
error 
made  
in… 

5 0.00 0.00 0.00 0.00 1.00 

MODEL6  1 2 3 4 5 

1 0.14 0.43 0.17 0.22 0.04 

2 0.00 0.20 0.37 0.29 0.14 

3 0.00 0.00 0.25 0.53 0.23 

4 0.00 0.00 0.00 0.67 0.33 

Given 
error 
made  
in… 

5 0.00 0.00 0.00 0.00 1.00 

Table 5: Distribution of Recognition Location by Testing Model – Declining Error Study 
 

  MODEL1 MODEL2 MODEL3 MODEL4 MODEL5 MODEL6 

1 0.08 0.092 0.068 0.08 0.088 0.06 

2 0.256 0.24 0.204 0.26 0.268 0.28 

3 0.272 0.348 0.352 0.388 0.276 0.348 

4 0.256 0.228 0.28 0.204 0.276 0.236 

Stage of 
recognition 

5 0.136 0.092 0.096 0.068 0.092 0.076 
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Expected Cost Analysis: We might use the 

probability information in a much more direct fashion, 
and determine the costs inherent within a particular 
environment.  Suppose for instance, that we postulate the 
cost of creating each type of testing model as follows: 

• MODEL1 - $2000 

• MODEL2 - $2500 

• MODEL3 - $2650 

• MODEL4 - $3000 

• MODEL5 - $6000 

• MODEL6 - $12000 
Further suppose that the costs of recognizing and 

rectifying an error increased significantly as development 
advanced, as suggested in [5]: 

• An error recognized in the Business 
Requirements (BR) stage costs $100 to 
rectify 

• An error recognized in the Systems 
Requirements (SR) stage costs $1000 to 
rectify 

• An error recognized in the High-Level 
Design (HLD) stage costs $10000 to rectify 

• An error recognized in the Detailed Design 
(DD) stage costs $100000 to rectify  

• An error recognized in the Implementation 
(Imp) stage costs $1,000,000 to rectify 

In such an environment, the long-term cost to 
rectify errors, when employing MODEL1, is: 

= (the proportion of errors recognized in BR) 
*(cost to rectify in BR) +  

 (the proportion of errors recognized in SR) 
*(cost to rectify in SR) +  

 (the proportion of errors recognized in HLD) 
*(cost to rectify in HLD) +  

 (the proportion of errors recognized in DD) 
*(cost to rectify in DD) +  

 (the proportion of errors recognized in Imp) 
*(cost to rectify in Imp) 

=  (.144)*100 + (.268)*1000 + (.296)*10000 + 
(.212)*100000 + (.08)*1000000 

=  $104,442.40 
Similarly, the error rectifying costs for the other 

five models are: 
MODEL2:  $113,770.00 
MODEL3:  $115,926.40 
MODEL4:  $115,357.60 
MODEL5:  $85,801.60 
MODEL6:  $82,374.40 
 

Finally, total costs (including tester costs) for 
each MODEL would be: 

MODEL1: $104,442.40 + $2000 = $106,442.40 
MODEL2: $113,770.00 + $2500 = $116,270.00 
MODEL3: $115,926.40 + $2650 = $118,576.40 
MODEL4: $115,357.60 + $3000 = $118,357.60 
MODEL5: $85,801.60 + $6000   = $91,801.60 
MODEL6: $82,374.40 + $12000 = $94,374.40 
 
This suggests that, in the long-term, if we are 

operating under the framework of the first scenario, that 
the best testing structure is MODEL5.  Although the team 
cost is higher, that is countered by the significantly lower 
expected error recognition costs. 

It might be the case, however, that we do not 
have a very good understanding of the probabilities as 
presented in Table 1.  In such a case, we might consider a 
graphical, sensitivity analysis approach.  Consider Figure 
7 below. 

Noting that the expected costs for MODEL5 and 
MODEL 6 are comparable, we might wish to consider 
any uncertainty we have in the probability of finding an 
error at Implementation in MODEL5.  That is, how would 
this uncertainty influence our decision-making process?  
Recall that the total expected cost under MODEL6 was 
$94374.40.  As long as the probability of finding an error 
at Implementation is within 4% of the base value, our 
expected costs are less than MODEL6, and we would 
prefer to institute MODEL5.  However, if our true value 
is potentially more than 4% of the base, then we would 
prefer to institute MODEL6. 

We may perform a similar sort of sensitivity 
analysis, when there are uncertainties with respect to cost 
values.  Suppose that there were uncertainty with respect 
to recognizing an error in the High-Level Design stage.  
How then does MODEL5 compare to MODEL6? 

If we change the cost to recognize and correct an 
error in the High-Level Design stage, we see the results in 
Figure 8.  Note that, as long as the decrease is no more 
than about 480% - a huge amount – MODEL5 remains 
preferable.  Thus, there is little sensitivity with respect to 
this cost parameter. 

Note that a similar sort of analysis could be 
executed, if cost information were available with respect 
to recognizing or remediating a problem in one phase, 
given it was created in some specific phase.  This would 
explicitly make use of the probabilities in Tables 2, 4, and 
6. 
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Figure 7: Cost Sensitivity 
 
 

 
 

Figure 8: Sensitivity to HLD Costs 
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CONCLUSION 

This paper proposed six models for engaging 
testers early and throughout the software development 
process. It also described the development and the 
analysis of simulation models of these six tester 
embedding models. Overall, the goal is higher quality 
application code with fewer errors produced, leading to 
higher quality applications being introduced into 
production.  Furthermore, by engaging early and 
throughout the software development process, testers will 
see themselves as stakeholders in the quality of the 
finished applications by virtue of their work throughout 
the software development process.  This will lead to the 
further development of software testing as a recognized 
and respected specialty within software development 
organizations. 
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