
A SYSTEMS ENGINEERING FRAMEWORK FOR IMPLEMENTING A SECURITY AND CRITICAL PATCH 
MANAGEMENT PROCESS IN DIVERS

Journal of Information Technology Management Volume X

 

Journal of Information Technology Management

A Publication of the Association of Management

A SYSTEMS ENGINEERING 

A SECURITY AND CRITI

DIVERSE ENVIRONMENTS (ACADEM

THE GEORGE WASHINGTO

THE GEORGE WASHINGTO

THE GEORGE WASHI

In any networked computing system, particularly in an academic environment, it is not uncommon to administer 
workstations that have been compromised because of security vul
software packages that are installed. Applying the Security and Critical Patch Management Process (SCPMP) described in 
this study at an early stage in a computing system can mitigate the risk of at
Technology (IT) operations. In this paper we propose an optimal systems engineering (SE) framework to improve the current 
patch management process framework, to prevent an organization’s networked computer s
of vulnerabilities that are immediately exploitable and could lead to critical system failure or compromised security. The 
proposed SE framework comprises a new mechanism for IT Operational Activities that increases network 
critical systems integration. By exerting SE principles with considerable influence on patching, IT departments can 
manipulate the SCPMP framework to meet patch management requirements, estimate the stages of the SCPMP performance, 
and determine an affordable portfolio. This article details a patch management framework design and the preliminary 
implementation of the SCPMP in an academic environment. The focus is on measuring variations in the components of a full 
patching cycle, and analyzing the data collected from implementing the process in an academic department’s workstations as 
a case study, using Maintenance Optimizing Tools.

 
Keywords: Patch management, security, systems engineering
 
 

A SYSTEMS ENGINEERING FRAMEWORK FOR IMPLEMENTING A SECURITY AND CRITICAL PATCH 
ROCESS IN DIVERSE ENVIRONMENTS (ACADEMIC DEPARTMENTS WORKSTATIONS) 

 

Journal of Information Technology Management Volume XXIV, Number 4, 2013 

Journal of Information Technology Management

ISSN #1042-1319 

A Publication of the Association of Management 

SYSTEMS ENGINEERING FRAMEWORK FOR IMPLEM

A SECURITY AND CRITICAL PATCH MANAGEMENT 

ENVIRONMENTS (ACADEMIC DEPARTMENTS 

WORKSTATIONS)  

 

HADI MOHAMMADI 

THE GEORGE WASHINGTON UNIVERSITY, USA 
hadimoh@gwu.edu 

THOMAS MAZZUCHI 

THE GEORGE WASHINGTON UNIVERSITY, USA 
mazzu@gwu.edu 

SHAHRAM SARKANI 

THE GEORGE WASHINGTON UNIVERSITY, USA 
sarkani@gwu.edu 

ABSTRACT 

In any networked computing system, particularly in an academic environment, it is not uncommon to administer 
workstations that have been compromised because of security vulnerabilities and viruses in the operating system or in the 
software packages that are installed. Applying the Security and Critical Patch Management Process (SCPMP) described in 
this study at an early stage in a computing system can mitigate the risk of attack as well as decrease the cost of Information 
Technology (IT) operations. In this paper we propose an optimal systems engineering (SE) framework to improve the current 
patch management process framework, to prevent an organization’s networked computer systems from becoming the target 
of vulnerabilities that are immediately exploitable and could lead to critical system failure or compromised security. The 
proposed SE framework comprises a new mechanism for IT Operational Activities that increases network 
critical systems integration. By exerting SE principles with considerable influence on patching, IT departments can 
manipulate the SCPMP framework to meet patch management requirements, estimate the stages of the SCPMP performance, 

ne an affordable portfolio. This article details a patch management framework design and the preliminary 
implementation of the SCPMP in an academic environment. The focus is on measuring variations in the components of a full 

the data collected from implementing the process in an academic department’s workstations as 
a case study, using Maintenance Optimizing Tools. 

: Patch management, security, systems engineering, vulnerability, maintenance optimization 

A SYSTEMS ENGINEERING FRAMEWORK FOR IMPLEMENTING A SECURITY AND CRITICAL PATCH 
ENVIRONMENTS (ACADEMIC DEPARTMENTS WORKSTATIONS)  

 
 

51 

Journal of Information Technology Management 

FRAMEWORK FOR IMPLEMENTING 

 PROCESS IN 

IC DEPARTMENTS 

In any networked computing system, particularly in an academic environment, it is not uncommon to administer 
nerabilities and viruses in the operating system or in the 

software packages that are installed. Applying the Security and Critical Patch Management Process (SCPMP) described in 
tack as well as decrease the cost of Information 

Technology (IT) operations. In this paper we propose an optimal systems engineering (SE) framework to improve the current 
ystems from becoming the target 

of vulnerabilities that are immediately exploitable and could lead to critical system failure or compromised security. The 
proposed SE framework comprises a new mechanism for IT Operational Activities that increases network security and 
critical systems integration. By exerting SE principles with considerable influence on patching, IT departments can 
manipulate the SCPMP framework to meet patch management requirements, estimate the stages of the SCPMP performance, 

ne an affordable portfolio. This article details a patch management framework design and the preliminary 
implementation of the SCPMP in an academic environment. The focus is on measuring variations in the components of a full 

the data collected from implementing the process in an academic department’s workstations as 

, maintenance optimization  



A SYSTEMS ENGINEERING FRAMEWORK FOR IMPLEMENTING A SECURITY AND CRITICAL PATCH 
MANAGEMENT PROCESS IN DIVERSE ENVIRONMENTS (ACADEMIC DEPARTMENTS WORKSTATIONS)  

  
 

Journal of Information Technology Management Volume XXIV, Number 4, 2013 

 
52 

INTRODUCTION 

Contemporary companies, institutions, and even 
governments maintain their computer operating systems 
or software packages by applying a Patch Management 
Process (PMP) to prevent their workstations from being 
compromised or attacked. Patch management, a main 
ingredient of IT security management [1] has become one 
of the prime requisites in every information technology 
infrastructure to (a) defend networked computer systems 
from attack, and (b) maintain a secure network. 
Therefore, it is vital to assure that the latest security and 
critical patches (SCP) are installed across an entire 
networked computer system. Patching is done in diverse 
environments not only to fix security and critical related 
vulnerabilities, but also to avoid leaking and other 
disclosure of critical data and security information, known 
as social loss.1 

This paper presents an optimal research systems 
engineering (SE) framework that can improve the current 
patch management process framework. Our framework 
has the effect of preventing any organization’s networked 
computer systems from becoming the target of 
vulnerabilities that are immediately exploitable and could 
lead to critical system failure or compromised security. 
According to [2], the process known as SE is to define a 
system structure based on customer requirements, and to 
satisfy the customer’s need that the system components 
function correctly and the system overall operates as 
required. Herein we create a framework for implementing 
a Security and Critical Patch Management Process 
(SCPMP), based on SE principles, to identify and allocate 
patching system requirements and computing systems 
resources that are embedded. In addition, the SCPMP 
monitors entire computing systems’ design and increases 
network security and critical systems integration. Current 
patch management process frameworks are primarily 
designed using automatic and routine patch and 
vulnerability management processes [3-9, 18], for 
maintaining computer operating systems or protecting 
software packages. The proposed framework 
accommodates maintenance optimization tools to help IT 
decision makers decide either to continue deploying 
patches that are already in process, or to block 
maintenance and reinitiate their patch management 
process at the time new critical and security patches 
(SCP) are released. This framework helps IT decision 

                                                           
1 Social loss represents as the negative impact of security 
vulnerabilities disclosure on the users, which can lead to 
critical costs and compromise their computing system 
[17]. 

makers both to cover and include the most recently 
released patches in their deployment cycle, and to carry 
out the process regardless of what patches have been 
released.  

The remainder of our paper proceeds as follows: 
the next section interprets the SCPMP overall structure. 
Then we propose a framework for implementing the 
SCPMP in diverse environments and explain how each 
stage operates. Also in proposal section, we describe how 
a maintenance optimization tool is accommodated in the 
proposed framework. Discussion of the case study 
appears in the case study section, wherein we implement 
the SCPMP in several academic department workstations 
by using a Markov Decision Process tool. We conclude 
our paper and suggest future study in the last section. 

SECURITY AND CRITICAL PATCH 

MANAGEMENT PROCESS 

OVERALL STRUCTURE 

The SCPMP not only focuses on how to deploy 
operating systems or software package patches on a 
workstation; it also helps IT decision makers or security 
operation technicians to use it as a completed patch 
management cycle to prevent their IT assets from being 
attacked and to reduce the cost of operations. As it is 
pointed out in [10], security patch deployment is crucial 
for managing any IT operation, as it helps to update 
vulnerable software or operating systems to prevent them 
from being attacked. At the same time, Dantu, et al., write 
that not only should IT operation staff deploy patches to 
end-users’ networked computing systems to mitigate the 
risk of compromise, but they also need to deploy patches 
across entire networked computer systems [12]. Thus, IT 
security and patch management are critical in networked 
computing systems and they are a key methodology for 
preventing them from becoming compromised. An 
effective and reliable patch management process is a 
robust, cyclic protocol for protecting networked computer 
systems, identifying vulnerabilities, and assessing risk in 
a given IT department [6] to make computing systems 
more secure and reliable. A patch management system 
optimizes security patch deployment for installation and 
management in multiple software packages and different 
platforms [11]. As Figure 1 shows, the proposed 
framework has some components that are initial 
requirements for the SCPMP; these are a management 
server center, patch storage, and a client agent (production 
and beta test workstations).  



A SYSTEMS ENGINEERING FRAMEWORK FOR IMPLEMENTING A SECURITY AND CRITICAL PATCH 
MANAGEMENT PROCESS IN DIVERSE ENVIRONMENTS (ACADEMIC DEPARTMENTS WORKSTATIONS)  

  
 

Journal of Information Technology Management Volume XXIV, Number 4, 2013 

 
53 

 

 

Figure 1: SCPMP overall structure 
 
 

Management server center: The management 
server center is the core of the SCPMP, and performs 
multiple tasks. First, it downloads patches from vendors’ 
patch sources and stores them in patch storage. Second, it 
provides web-based user interface for IT decision makers 
or security operation technicians. Third, it communicates 
with the client agent installed on each networked 
computer system to detect, monitor, deploy, and distribute 
patch files and install patches by the client’s agent based 
on each system’s configuration. In addition, the 
management server center can generate a report of the 
status of the patch installation process. Patch management 
server center products are offered by such vendors as 
DELL KACE appliance (KBOX1000, kace.com), 
Lumension (lumension.com), and other companies that 
have the same product that identifies security and critical 

patches across diverse networked environments and 
deploys their remediation to be installed through the client 
agent.2 Overall, the management server center performs 
checks for patch definition updates at a specified start 
time, and downloads all applicable packages based on 
patch subscription settings. In addition, it limits network 
activity to off hours, and specifies a stop time for 
downloading. 

Patch storage: Patch storage stores patches that 
the patch management server center downloads from 

                                                           
2 The number of companies that offer an automatic patch 
management server is increasing significantly because of 
important security disclosures and the need to protect 
computing systems from attack. The companies named 
are well known in the IT industry.  



A SYSTEMS ENGINEERING FRAMEWORK FOR IMPLEMENTING A SECURITY AND CRITICAL PATCH 
MANAGEMENT PROCESS IN DIVERSE ENVIRONMENTS (ACADEMIC DEPARTMENTS WORKSTATIONS)  

  
 

Journal of Information Technology Management Volume XXIV, Number 4, 2013 

 
54 

vendors. It can contain two kinds of patches: a) patches 
that include software installers; i.e., the patch file will 
install a new version of the software; and b) patches that 
fix security vulnerabilities and breaches or other bugs.  

Client agent: The client agent is the software-
based piece of this patch management system that needs 
to be installed and deployed on all managed computer 
systems. The client agent can run full hardware and 
software inventory reports, scan system information, and 
detect installed patches. Also, it performs interval 
scanning of the client’s overall workstation system 
components and communicates with the management 
server center. The client agent should be installed on 
production and beta test workstations (test machines built 
with the same hardware and installed with the same 
software as the production machines).3   

SCPMP FRAMEWORK AND 

DEFINITION 

The main goals of the proposed SE practicable 
framework for implementing the SCPMP are: 

1. To provide an effective optimal patch 
management policy for protecting networked 
computer systems, in particular academic 
workstations. 

2. To repair software package vulnerabilities. 
3. To fix security holes in a computer’s operating 

systems.  
4. To enhance IT operation department efficiency. 
5. To reduce the cost of IT operations activities. 
6. To prevent the loss of critical data and security 

information from any computing system in 
diverse environments.  

The projected SE framework for implementing 
the SCPMP; the main stages are defined as follows: 

Download: downloading patches by the 
management server center via a third party and storing 
them in patch storage, which was discussed in the 
previous section. 

Detect: comprehensive detection across entire 
networked computer systems (classification and earlier 
prioritization) to show which patches are already 
installed, and which patches need to be installed in a new 
patch management deployment cycle. In other words, by 
detection, the IT operation staff will figure out which 
computing system needs to be patched. The detection 

                                                           
3
 IT operation staffs also use client agent software to 

install various software, inventory their hardware, script, 
and report assets.  

stage can be seen as initial planning for the deployment 
stage.  

Assess: assessing the downloaded patches and 
measuring the variations in components of the full 
patching cycle; also ensuring the downloaded patches will 
not damage the systems by crashing systems operation 
and performance. Efficient security patch deployment 
identifies and remediates security vulnerabilities by 
deploying and installing patches without negatively 
impacting the software applications installed on advanced 
computing systems or crucial servers [6]. Consequently, 
the impact of precise patch assessment is to help IT 
managers enhance the efficiency of the patch installation 
procedure to reduce the system’s vulnerabilities.  

Test: Testing is one of the essential elements of 
patch management. Testing the released patches on the 
same system configuration as the production environment 
helps IT administrators simulate the installation process 
and learn the consequences of patch updates and identify 
any conflicts. For this phase, there should be a few non-
production workstations that are designated as beta test 
environment systems. As noted in [6], patch installation 
can have unintended results; therefore, our beta test 
environment systems contain some networked computer 
systems based on the production workstation’s 
configuration and setting so as to avoid extraneous 
alternatives.  

Incident: An incident might go as follows: After 
implementing the test phase and ensuring that the 
downloaded patches do not cause any further interruption 
of operations, suddenly we notice some highly urgent 
security and critical patches (USCP) have been released 
by vendors or a third party such as vulnerability 
identifiers.4 IT managers then need to make a decision 
about this circumstance to ensure that this emergency 
patch update for software or an operating system platform 
will not cause any problem and does not increase the 
system’s risk of compromise. The next step is the 
Maintenance Optimization stage, in which the manager 
will decide on an efficient plan for continuing the 
patching process. 

Maintenance Optimization (MO): In the 
decision grid stage or Maintenance Optimization phase 
the IT manager must decide how to contrive to continue 
the SCP. We will thoroughly discuss the MO stage in the 
next segment.    

Deploy: the last stage is to deploy and install 
patches on production workstations. Figure 2 shows the 
projected SE framework for implementing the SCPMP.  

                                                           
4 Vulnerability identifiers or coordinators such as US-
CERT (United States Computer Emergency Readiness 
Team), which develop security solutions (us-cert.gov). 



A SYSTEMS ENGINEERING FRAMEWORK FOR IMPLEMENTING A SECURITY AND CRITICAL PATCH 
MANAGEMENT PROCESS IN DIVERSE ENVIRONMENTS (ACADEMIC DEPARTMENTS WORKSTATIONS)  

  
 

Journal of Information Technology Management Volume XXIV, Number 4, 2013 

 
55 

 

 
 

Figure 2: SCPMP framework 

Maintenance Optimization Stage  

MO increases a decision-maker’s power to 
optimize operation cost and ensure reliable and safe 
system performance [13]. Hence, involving MO tools will 
make networked computer systems more secure and 
protect them from becoming the target of vulnerabilities. 
The MO stage also keeps the patch management 
deployment process low-cost, as it defines a more 
efficient IT operation activity. In this section, we study 
how IT managers make a decision once some urgent 
security and critical patches (USCP) are released while 
they are in the midst of implementing the patching 
process. Monitoring the receipt and download of security 
and critical patches (SCP) is a continuous process; 
therefore, the expectation of receiving USCP is one of the 
most important priorities for IT department technicians 
who are responsible for deploying patches throughout 
networked computer systems. In our proposed SE 
framework, the likelihood of receiving USCP is 
considered as a probability.  

The patch update process is complex and costly 
[1]; therefore, it is very important for IT department 
managers to make an ideal decision not only to (a) cut the 
costs of the IT department, but also to (b) prevent 
networked computer systems from receiving any 
vulnerability attack, where vulnerability is defined as a 
security or other critical hold or weakness of a software 
application or a compromised operating system that 
allows hackers access to the system’s root to exploit the 
flaw [18]. 

In this paper, the decision-making phase of 
performing the SCPMP is modeled based on a Markov 
Decision Process (MDP). Our deterioration model is a 
finite and countable state space, once the USCP has been 
released, where the patch management process cycle has 
already passed the test phase. Accordingly, IT decision 
makers need to be prepared to deploy and install these 
newly released patches on the computer systems they 
manage. Their decision has significant impact on IT 
operations.  

Patch management is a Preventive Maintenance 
(PM) process; thus, newly released patches need to 
deploy and install before any damages occur. By applying 
patch management, the IT department is able to protect its 
computers from leaking data and becoming the target of 
security attacks that cause the company or institution to 
incur major costs, and to avoid maintenance-induced 
compromise. The MO stage in the proposed SCPMP 
framework will help IT operation managers decide to 
continue maintenance with the patches that have already 
been tested, or block the patching cycle (maintenance) 
and move back to the detection phase to include the new 
USCP in the patch packages. Thereupon, they will detect 
their entire networked computer systems with the new set 
of patches and proceed with the patching loop. The main 
contribution of this subsection is to provide 1) the most 
efficient patch management policy which decreases the 
cost of IT operational, and 2) the best decision about 
urgent security and critical circumstances that the IT 
decision maker is involved with. 

Modeling the Markov Decision Process 

The proposed framework assumption is based on 
a seven-day operation cycle, which means the patching 
cycle process takes a 7-days cycle to implement one loop 
of the SCPMP as its time epochs. Mazzuchi, et al. [13], 
Amari, et al. [16], and Okamura, et al. [18] discuss a 
Markov decision process that is close to the MO process 
in our framework. The ultimate goal is to find an 
approach, which in MDP is called a policy, by which the 
IT decision maker can decide which patch distribution 
process or maintenance action should be taken in each 



A SYSTEMS ENGINEERING FRAMEWORK FOR IMPLEMENTING A SECURITY AND CRITICAL PATCH 
MANAGEMENT PROCESS IN DIVERSE ENVIRONMENTS (ACADEMIC DEPARTMENTS WORKSTATIONS)  

  
 

Journal of Information Technology Management Volume XXIV, Number 4, 2013 

 
56 

patching state so as to enhance IT security and decrease 
the cost of operation. The assumptions of the maintenance 
optimization phase of the proposed framework follow. 

Inputs:  

1. We use a Markov Chain5 to model our multi-
stage deterioration.6 In this model the patching 
deployment process contains a number of stages 
and the deterioration proceed in one direction. 
Here, the patch type condition is classified in 
four stages, S={Sn,Sv,Sr,Su}, which are 
determined as the type of patch that can be 
released; this state space assumption is finite 
and discrete. The first stage is the perfect 
condition stage wherein no patch is released and 
the last stage is the condition wherein a highly 
urgent patch is released: 
� Sn: no patch is released. 
� Sv: optional version update for the 

operating system or software installer patch 
is released 

� Sr: recommended patch is released 
� Su: urgent security and critical patch is 

released 
Figure 3 illustrates all states of patch types that 

may be released in the midst of a patching cycle, so that a 
decision has to be made at the subsequent MO phase. We 
select a stationary policy because the maintenance 
decision to be made is based upon the recent type of 
patches that just released and not on maintenance action 
chosen time [13]. The criterion for defining the proposed 
policy is the extent to which it helps IT managers choose 
an appropriate rule for taking action. States of patch types 
are: 

 

                                                           
5 In a deterioration model based on a Markov Chain 
(MC), all deterioration stages are in one-direction where 
the beginning stage is the no action stage (good stage) and 
the last one will be fail stage [16]. The proposed 
deterioration model follows MC to meet all kinds of patch 
requirements.  
6 When any operating system or software patch is 
released, the type of patch will determine the level of 
deterioration of the patch management process.   

 
 

Figure 3: States of patch type 
 
 

2. We assume that the action space is finite and 
discrete, and so based upon the patch 

deterioration type one of the � = �� =
��,��,��,	�  four maintenance actions 
might be chosen (Figure 4); further, the size of 

the maintenance action is if � ∈ , �������� =
1: 

 
 

Figure 4: Maintenance decision action 
 
 
� No Action (NA) is performed; focus on 

current task regardless of the patches 
released; no urgent patch has been released. 

� Minimal Maintenance (MM) is performed; 
add USCP to the in-progress patches’ 



A SYSTEMS ENGINEERING FRAMEWORK FOR IMPLEMENTING A SECURITY AND CRITICAL PATCH 
MANAGEMENT PROCESS IN DIVERSE ENVIRONMENTS (ACADEMIC DEPARTMENTS WORKSTATIONS)  

  
 

Journal of Information Technology Management Volume XXIV, Number 4, 2013 

 
57 

package-cycle without performing the 
detecting and testing procedure on the 
networked computer systems.  

� Preventive Maintenance (PM) is performed; 
go back to the previous phase, which is to 
test USCP solely on beta test machines. 

� Corrective Maintenance (CM) is performed; 
go back to the detection phase, include the 
USCP in the current package of patches, and 
proceed through the cycle.  

3. The total cost of one cycle of implementing the 
SCPMP is related to the cost of the MO process 
that is assumed to be bounded. This means that 
if the cycle proceeds as a regular patching 
process without any MO decision action, it can 
change once some patches are released in the 
middle of our patching cycle. In this paper, we 
consider the proposed SCPMP while we take 
any maintenance optimization action. Therefore, 
the cost formation can be denoted by the 
following: 
� cK: fixed cost of the security and critical 

patch process for the Management Server 
Center and departmental cost 

� cA(a): cost of maintenance (patching) action  
� cF(s): cost of damage to a networked 

computer system per unit time when it 
becomes the target of vulnerabilities that are 
immediately exploitable and could lead to 
critical system failure  

� cS(s): Unit of time in state � Cost 
Once the SCPMP framework cycle starts to go 

through each stage to deploy patches and monitor 
networked computer system performance, the next 
challenge faced in practice is to determine what policy 
needs to be applied to increase the efficiency of the patch 
deployment process. Figure 5 presents a hypothetical 
deterioration process, P(t), which is a stochastic process 
that would be tracked over time from each decision stage 
of the MO phase in the SCPMP framework. As Figure 5, 
shown P(t) starts at approximately zero and tends toward 
the failure threshold, which is the CM stage. However, if 
the P(t) passes the failure threshold (CM stage), the 
deterioration process is considered to highly damage the 
security of the networked computer systems.  

 
 
 
 
 
 
 
 

 
Storage                                                                     Failure 
threshold                                                                  P (CM) 

P(t) 
                                                                                       

 
 
 
 

                   Time t                            tCM 
 

Figure 5: Deterioration process 
 
 

4. The probability of the maintenance decision 

action �� ∈ �� will be chosen in state s and the 

process transferred to state �� is denoted by 

����|�, ��. 
Functional Equation and Optimizing: In this 
subsection, a probabilistic model for the SCPMP in the 
MO phase is derived based on the MDP [13, 16, 18, 21-
23]. The main goal is to determine the stationary policy 
that minimizes IT operation costs. We develop and 
present the iterative policy [21] to determine an optimal 
maintenance policy, so as to increase the patch 
management process’s efficiency and mitigate the risk of 
security vulnerabilities. The proposed optimal policy 
helps IT departments avoid incurring excessive 
maintenance costs for compromised production machines.  

We assume that states, time, and actions are 
discrete. Then, all possible maintenance actions are as 
follows: 

�: Transition from state s to state s’  
A: Sets of possible and finite maintenance actions in state 
S if: 

 

� ∈ �, ��������                                                              (1)            
 
When the patches are released in state s at time 

t=0,1,2… and maintenance action � ∈ � is taken, the 

patching deployment operation can be in stage �� after 
one unit of time with probability: 

 

����|�, �� = Pr [���� = ��|�� = � , �� = �]                  (2) 
 

 ���|�, �� = ![ ���|�� = �, �� = �, ���� = ��]            (3) 
 

Equation (3) comprises the time spent in state s� 
when the initial state is � and action � has been taken. For 

computing the expected cost 	��, �� while we are in state 
s and make decision a, we have: 
 



A SYSTEMS ENGINEERING FRAMEWORK FOR IMPLEMENTING A SECURITY AND CRITICAL PATCH 
MANAGEMENT PROCESS IN DIVERSE ENVIRONMENTS (ACADEMIC DEPARTMENTS WORKSTATIONS)  

  
 

Journal of Information Technology Management Volume XXIV, Number 4, 2013 

 
58 

	��, �� = #$ + #���, �� + ∑ ����|�, ��','�∈( . #*��′� +
∑ ����|�, ��',',∈( .  ���|�, ��. #����                              (4) 

 
In MDP the probability of transition from one 

state to another does not depend upon the patch state 
history if one of the maintenance actions is selected; 
therefore, the patch deployment process is rely on the type 
of patches which have been urgently released and doesn’t 
depend on the time of the maintenance action is taken 
[13]. Based upon [13, 22], V(s) is a value function that 
represents the expected objective value obtained from the 
discounted cost incurred. For discounted object function: 

 

-��� = 	��, �� + ∑ ����|�, ��',',∈( . .. -����             (5)

  

Where . ∈ �0,1� represents the discount factor 

for one unit of time, . = 1 1 + �⁄  which attempts to 
minimize the expected discounted cost for one unit of 

time, �s,s’ is the rate of transition time from state � to state 

��, and V(s) is the value function using �. While we start 
the maintenance process, we choose to perform 
maintenance action in state s and derive the cost of C(s,a). 

Then, the total probability of transition to state ��where a 

maintenance action � = �� = ��, ��, ��, 	�1 is 
employed and initial state is s will multiply to discounted 

factor � and value function of state ��.  The value of a 
state is the minimum expected cost that will be incurred in 
that state, plus the expected discounted value of all 

possible states ��. A fixed policy of the V,C,P, and T 
functions, can be rewritten in matrix-vector form as 
equation (5). Based upon the Bellman equation [22] the 
optimal policy can be derived: 

   

2��� = arg 5�6��	��, �� + ∑ ����|�, ��',',∈( . .. -����1      

(6) 
 

We can set an optimal policy 2��� for 

minimizing 	��, �� and re-evaluate V and C, and repeat 
for each state. This is called policy iteration, and it 
guarantees that the selected policy minimizes the patching 

operation cost [16]. In the other words, a policy 2��� = � 
is selected such that the decisions based upon optimal 
policy of the MO stage are taken according to chose the 
maintenance decision which selected from limited actions 
A(a) and the costs of patching process C=(s,a) that are 

incurred once the transition is in state s and action � ∈ � 
is taken. As Mazzuchi, et al., point out, the cost of 
deploying patches at each stage, plus the probability that 
each state multiplies to the value of performing action in 

the next state, Vα(��), changes Equation (5) to become 
recursive. Equation (5) represents the overall value of 
state  s, which determines which action is opted to be 

taken [13]. After counting the cost of all possible states s 
from Equation (6), we derive that the optimal-cost 
decision of the MO phase would be to minimize the result 
of Equation (6), and the IT manager needs to choose the 
policy based on each action taken in each state of a patch 
type.  

CASE STUDY 

The proposed method is demonstrated through a 
case study that implements the SCPMP through an 
academic networked computers system. The process is 
assumed to go on indefinitely, and the problem is to opt 
for an optimal policy, which minimizes the average cost 
security and critical patching process.  
Inputs: as we mentioned before, the patching process 
takes a 7-day cycle. Then the mean time between two 
cycles of patching is 168 (7/24) hours, λ=0.168. Further, 

1. Cost of the IT operation, cK = $1442 
2. Cost of being valuable and caused system 

failure: cF(s)= $891 
3. No patching Action Cost: cM(NA)=0 
4. Minimal Maintenance Cost: cM(MM)= $26 
5. Preventive Maintenance Cost: cM(PM)= $20 
6. Corrective Maintenance Cost: cM(CM)= $618 

 
Table 1 shows that the total state transition 

probabilities ∑ ����|�, ��',',∈(  and expected time 

functions matrix based on this case study are: 
 

Table 1: Transition probabilities and time 
function 

 

7 8�9�|9, :�
9,9,∈;

 

1 0 0 0 

0 1 1 0 

0 0 2/3 1 

0 0 0 1 

<�9�|9, :� 

24 0 0 0 

0 24 0 0 

0 24 24 48 

0 0 0 72 

 
Problem formulation and optimal policy solution: we 
assume that the action space is finite and discrete, and so, 
based on patch deterioration type, one of the following 

four maintenance decision actions � = �� =
��,��,��,	� can be taken [16]. Further, the size of 
maintenance actions is, if: 
 

� ∈ , �������� = 1 
then 



A SYSTEMS ENGINEERING FRAMEWORK FOR IMPLEMENTING A SECURITY AND CRITICAL PATCH 
MANAGEMENT PROCESS IN DIVERSE ENVIRONMENTS (ACADEMIC DEPARTMENTS WORKSTATIONS)  

  
 

Journal of Information Technology Management Volume XXIV, Number 4, 2013 

 
59 

�� = ���1, �= = �	�1                                                  (7) 
 

The maintenance actions in the SV and SR states 
are determined as follows: 

 

�> = �? = ���, ��, ��1                                             (8) 
 

If the IT decision maker takes no action (NA), 
there is no change in the patching cycle: 

 

�',',���� = @1          ABC          � = �′
0          ABC          � ≠ �′E                             (9) 

 
If the IT decision maker takes minimal 

maintenance (MM): 
 

�',',���� = �',',���� = @1          ABC          � = �� + 1
0          ABC          � ≠ �� + 1E        

(10) 
 

Where the IT decision maker takes Corrective 
Maintenance (CM) the deterioration stage reaches the 
perfect stage: 

 

�',',�	�� = @1          ABC          �� = 1
0          ABC          �′ ≠ 1E                          (11) 

 
In this case study we focus not only on the 

diversity of networked computer systems, but also on the 
different usage of computers throughout a university by 
staff, faculty, students, and researchers, and in 
laboratories. The optimal cost policy can be to minimize 
Equation (5) with respect to any action that will be taken 
[13, 16]. Table 2 shows the solution of a stabilized policy 
for patch management in an academic environment: 

 

Table 2: Optimal policy  
 

State Maintenance Action Value 

Sn NA 5492 

Sv MM 7004 

Sr PM 4493 

Su CM 4277 

 

The proposed policy helps IT decision makers to 
reduce the cost of patch management by avoiding systems 
failure that would cause the institution to hire one more 
technician to rebuild or reimage a compromised computer 
with a cost of 19 to 25 US dollars per hour [20]. We tried 
to mitigate the risk of systems failure and security 
vulnerabilities that create more cost for an IT department, 

which would have to hire more technical staff to capture 
users’ profiles and rebuild the system that has been 
compromised. With the proposed SCPMP framework, an 
IT department can save 10 percent of its operational 
budget because of the resulting highly efficient level of its 
employees’ performance.  

CONCLUSION 

In this paper, we have proposed an SE 
framework for an SCPMP in diverse environments based 
on a case study of academic networked computer systems. 
We focused on an optimal research SE framework that 
can improve the current patch management process 
framework for preventing an organization’s networked 
computer systems from becoming the target of 
vulnerabilities that are immediately exploitable and could 
lead to critical system failure or security compromise. We 
studied an academic environment with nonhomogeneous 
software packages installed on complex computing 
systems. Indeed, implementing the patch management 
process in different computational environments using the 
Bayesian stochastic theorem could be the subject of future 
study.  

In this work, after we modeled our MO phase by 
applying the MDP model, we developed a new security 
and critical patch management framework to help IT 
managers make decisions not only to make the patch 
management process more efficient, but also to keep the 
patch management deployment process a low-cost part of 
the operational IT infrastructure.  

REFERENCES 

[1] Cavusoglu, H., H. Cavusoglu, and J. Zhang. 
“Security Patch Management: Share the Burden or 
Share the Damage?” Management Science, Volume 
54, Number 4, 2008, pp.657-670. 

[2] Nikolaidou, M., N. Alexopoulou, A. Tsadimas, A. 
Dais, and D. Anagnostopoulos. “A Consistent 
Framework for Enterprise Information System 
Engineering” Presentation at 10

th
 IEEE 

International Enterprise Distributed Object 

Computing Conference, doi: 10.1109/EDOC.2006.6 
(2006), October 2006, pp.492-496.  

[3] Tian, H. T., L. S. Huang, Z. Zhou, and Y. L. Luo. 
"Arm Up Administrators: Automated Vulnerability 
Management." Presentation at 7

th
 International 

Symposium on Parallel Architectures, Algorithms 

and Networks, 2004, doi: 
10.1109/ISPAN.2004.1300542 (2004), May 10-12,  
pp.587-593. 



A SYSTEMS ENGINEERING FRAMEWORK FOR IMPLEMENTING A SECURITY AND CRITICAL PATCH 
MANAGEMENT PROCESS IN DIVERSE ENVIRONMENTS (ACADEMIC DEPARTMENTS WORKSTATIONS)  

  
 

Journal of Information Technology Management Volume XXIV, Number 4, 2013 

 
60 

[4] Wu, W., F. Yip, E. Yiu, and P. Ray. "Integrated 
Vulnerability Management System for Enterprise 
Networks." Presentation at the 2005 IEEE 

International Conference on e-Technology, e-

Commerce and e-Service, 2005, doi: 
10.1109/EEE.2005.83 (2005), March 29-April 1,  
pp.698-703. 

[5] Zhao, D., S. M. Furnell, and A. Al-Ayed. "The 
Research on a Patch Management System for 
Enterprise Vulnerability Update." Presentation at 

the WASE International Conference on Information 

Engineering, doi: 10.1109/ICIE.2009.233 (2009),  
July 10-11, 2009, pp.250-253. 

[6] Liu, S., R. Kuhn, and H. Rossman. "Surviving 
Insecure IT: Effective Patch Management." IT 

Professional 11, no.2, doi: 10.1109/MITP.2009.38, 
March-April 2009, pp.49-51 

[7] Park, Jung-jin, Jin-sub Park, Jeong-gi Lee, Bong-
hoi Kim, Geum-boon Lee, and Beom-joon Cho. 
"Windows Security Patch Auto-Management 
System Based on XML." Presentation at the 9th 

International Conference on Advanced 

Communication Technology, doi: 
10.1109/ICACT.2007.358382 (2007), February 12-
14, 2007, pp.407-411. 

[8] Ramaswamy, A., S. Bratus, S. W. Smith, and M. E. 
Locasto.  "Katana: A Hot Patching Framework for 
ELF Executables." Presentation at the 

International Conference on Availability, 

Reliability, and Security, 2010. doi: 
10.1109/ARES.2010.112 (2010), February 15-18, 
pp.507-512. 

[9] Chang, Chuan-Wen, Dwen-Ren Tsai, and Jui-Mi 
Tsai. "A Cross-Site Patch Management Model and 
Architecture Design for Large Scale Heterogeneous 
Environment." Presentation at the 39

th
 Annual 

International Carnahan Conference on Security 

Technology, doi: 10.1109/CCST.2005.1594837 
(2005), October 11-14, 2005, pp.41-46 

[10] Yang B., Aran N. A., Zeng S., and Puri R. "SLA-
Driven Applicability Analysis for Patch 
Management." Presentation at the IFIP/IEEE 

International Symposium on Integrated Network 

Management, doi: 10.1109/INM.2011.5990544 
(2011), May 23-27, 2011, pp.438-445 

[11] Seo, Jung-Taek, Yun-ju Kim, Eung-Ki Park, Sang-
won Lee, Taeshik Shon; and Jongsub Moon. 
“Design and Implementation of a Patch 
Management System to Remove Security 
Vulnerability in Multi-Platforms.” Fuzzy Systems 

and Knowledge Discovery 4223 doi: 
10.1007/11881599_87, 2006, pp.716-724. 

[12] Dantu, R., P. Kolan, R. Akl, and K. Loper. 
"Classification of Attributes and Behavior in Risk 
Management Using Bayesian Networks." 
Presentation at 2007 IEEE Conference on 

Intelligence and Security Informatics, doi: 
10.1109/ISI.2007.379536 (2007), May 23-24, 2007, 
pp.71-74. 

[13] Mazzuchi, T. A., J. M. van Noortwijk, and M. J. 
Kallen. “Maintenance Optimization.” In 
Encyclopedia of Statistics in Quality and 

Reliability. New York: Wiley, 2007. doi: 
10.1002/9780470061572.eqr109. 

[14] van der Weide, J. A. M., M. D. Pandey, and J. M. 
van Noortwijk. “Discounted Cost Model for 
Condition-Based Maintenance Optimization.” 
Reliability Engineering & System Safety 95, Issue 3 
ISSN 0951-8320, 10.1016/j.ress.2009.10.004, 
March 2010, pp.236-246. 

[15] van Noortwijk, J. M., A. Dekker, R. M. Cooke, and 
T. A. Mazzuchi. "Expert Judgment in Maintenance 
Optimization." IEEE Transactions on Reliability, 
Volume 41, Number 3, doi: 10.1109/24.159813, 
September 1992, pp.427-432. 

[16] Amari, S. V., L. McLaughlin, and H. Pham. "Cost-
Effective Condition-Based Maintenance Using 
Markov Decision Processes." Presentation at the 

Annual Reliability and Maintainability Symposium, 
doi: 10.1109/RAMS.2006.1677417 (2006), January 
23-26, 2006, pp.464-469. 

[17] Cavusoglu, H. and S. Raghunathan. "Efficiency of 
Vulnerability Disclosure Mechanisms to 
Disseminate Vulnerability Knowledge." IEEE 

Transactions on Software Engineering, Volume 33, 
Number 3d, doi: 10.1109/TSE.2007.26, March 
2007, pp.171-185. 

[18] Okamura, H., M. Tokuzane, and T. Dohi. "Optimal 
Security Patch Release Timing under Non-
homogeneous Vulnerability-Discovery Processes." 
Presentation at 20th International Symposium on 

Software Reliability Engineering, doi: 
10.1109/ISSRE.2009.19 (2009), November 16-19, 
2009, pp.120-128. 

[19] Murphy, Kevin. ”Markov Decision Process (MDP) 
Toolbox for Matlab.”, 
http://www.cs.ubc.ca/~murphyk/Software/MDP/md
p.html, 1999, Last updated: October 23, 2002. 

[20] Salary Wizard, “a division of Kenexa”, URL = 
http://swz.salary.com/SalaryWizard/PC-aintenance-
Technician-I-Salary-Details-20052.aspx, January 
2013 Salary.com, last updated April 2013. 

[21] Marie-Josee Cros. “Markov Decision Processes 
(MDP) Toolbox”, 



A SYSTEMS ENGINEERING FRAMEWORK FOR IMPLEMENTING A SECURITY AND CRITICAL PATCH 
MANAGEMENT PROCESS IN DIVERSE ENVIRONMENTS (ACADEMIC DEPARTMENTS WORKSTATIONS)  

  
 

Journal of Information Technology Management Volume XXIV, Number 4, 2013 

 
61 

http://www.mathworks.com/matlabcentral/fileexch
ange/25786-markov-decision-processes-mdp-
toolbox, 09 Nov 2009, last updated 31 Oct 2012. 

[22] Bellman, R. “On the Theory of Dynamic 
Programming.” Proceedings of the National 

Academy of Sciences of the USA, PNAS, Volume 
38, Number 8, URL = 
{http://www.pnas.org/content/38/8/716.short}, 
August 1, 1952, pp.716-719. 

[23] Ross M. S., Applied Probability Models with 

Optimization Applications (Courier Dover 
Publications 1970), ISBN 0-486-67314-6, 1970, 
pp.119-132 

AUTHOR BIOGRAPHIES 

Hadi Mohammadi is a doctoral student in the 
Engineering Management and Systems Engineering 
Department in the School of Engineering and Applied 
Science at the George Washington University, 
Washington, D.C. He has held software deployment 
engineer position at Department of Computing Facility. 

 

Thomas Mazzuchi, D.Sc. received a B.A. 
(1978) in Mathematics from Gettysburg College, 
Gettysburg, PA, a M.S. (1979) and a D.Sc. (1982), both in 
Operations Research from the George Washington 
University, Washington DC. Currently, he is a Professor 
of Engineering Management and Systems Engineering in 
the School of Engineering and Applied Science at the 
George Washington University, Washington, D.C. He is 
also the Chair of the Department of Engineering 
Management and Systems Engineering at the George 
Washington University where he has served as the Chair 
of the Operations Research Department and as Interim 
Dean of the School of Engineering and Applied Science. 

 
 
 
 
 
 
 

Shahram Sarkani, Ph.D., P.E., is a Professor of 
Engineering Management and Systems Engineering at 
The George Washington University. Professor Sarkani 
has engaged in engineering research, technology 
development, and engineering education since 1980. He is 
author of over 150 technical publications and 
presentations. He remains engaged with important 
ongoing research in the fields of engineering 
management, systems engineering, civil engineering, and 
logistics management. Since 1987, he has conducted 
sponsored research with such organizations as NASA, the 
National Institute of Standards and Technology, the 
National Science Foundation, the U.S. Agency for 
International Development (in association with Zagazig 
University, Egypt), the U.S. Department of Interior, the 
U.S. Department of Navy, the U.S. Department of 
Transportation, and Walcoff and Associates Inc. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


