
DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

Journal of Information Technology Management
 ISSN #1042-1319
A Publication of the Association of Management

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE IN
CLOUD COMPUTING: AN INVESTIGATIVE STUDY

ALAN T LITCHFIELD
AUCKLAND UNIVERSITY OF TECHNOLOGY

alan.litchfield@aut.ac.nz

AWADH ALTHWAB
AUSTRALIAN NATIONAL UNIVERSITY

u6443129@anu.edu.au

CHANDAN SHARMA
AUCKLAND UNIVERSITY OF TECHNOLOGY

chandan.sharma@aut.ac.nz

ABSTRACT
This article reports on a study that demonstrates the weak points found in major relational database engines that were

set up in a Cloud Computing environment, in which the nodes were geographically distant. The study undertook to establish
whether running databases in the Cloud provided operational disadvantages. Findings indicate that performance measures
of RDBMS’ in a Cloud Computing environment are inconsistent and that a contributing factor to poor performance is the
public or shared infrastructure on the Internet. Also that RDBMS’ in a Cloud Computing environment become network-bound
in addition to being I/O bound. The study concludes that Cloud Computing creates an environment that negatively impacts
RDBMS performance in comparison to the n-tier architecture for which common RDBMS’ were designed.

Keywords: Cloud Computing, Distributed Relational Databases, Network and I/O Latency, Query Planning

INTRODUCTION

There exists a concern common to organisations
that are considering the transition of geographically dis-
tributed operational systems to a Cloud Computing (CC)
based environment. That following a period of significant
hype about the promises that CCwould provide an organisa-

tion, the reality experienced by those that havemade a naive
attempt to transition to the Cloud, found the performance of
systems lacking. Also that when dealingwith large datasets,
CC is increasingly seen as a mainstream technology [31].
This creates a significant concern for the enterprise, for ex-
ample, at as January 2016, survey results indicate that of a
sample size of 1060 IT professionals, 77% use private cloud

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 16

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

services, 89% use public cloud services, 71% use hybrid,
and perhaps more significantly enterprises are using multi-
ple cloud services to satisfy their requirements [47]. More-
over, this report also states that the main challenge for cloud
adoption is not security but a lack of resources and exper-
tise.

This paper presents the results of a study fo-
cussed specifically on identifying where significant perfor-
mance issues in a naively deployed database system occur.
The starting point for the study is with the premise that
any distributed Relational Database Management System
(RDBMS) requires a network and nodes (typically the n-
tier architecture), that applications of RDBMS’ are normal
in an organisational context, and that the performance of
RDBMS has been a concern for researchers for many years.
The n-tier architecture operates on a client/servermodel and
includes a database system and at least one server applica-
tion or middleware, through which users gain access to the
database system [17, 15]. However, the CC architecture dif-
fers from an n-tier architecture such that CC infrastructure
includes the public Internet and typically abstracts the phys-
ical architecture through virtualisation [23, 26].

In CC, the user may obtain direct access to data
or via a Service-Oriented Architecture (SOA), for exam-
ple through an Application Programming Interface (API)
made available by a service provider. In an n-tier architec-
ture, programmatic controls exist within a data centre and
amongst its networks and servers as nodes and hooks but,
unlike the public network infrastructure, these have greater
and controllable bandwidth [3]. This situation, of a shared
and limited bandwidth, constrains the performance of ap-
plications that run in CC [38]. Thus, for example, query
optimisation in distributed RDBMS’ in n-tier architecture
suffer from performance issues [9, 32, 39, 43]. Therefore,
whereas RDBMS’ normally operate on n-tier architecture,
we investigate RDBMS performance operating on a cloud-
based architecture to determine where break points exist.
What we have found is that all the systems up for testing
failed at least one of the tests but that they failed them in
different ways.

The paper is structured as follows; in the next sec-
tion, related research work is presented, then themethod de-
veloped for the study is described in brief, the results of ex-
periments are presented and then discussed, and finally, in
the conclusion is presented an outline of the findings and in-
dications of further research both planned for and currently
underway.

RELATEDWORK
CC is abstract and encompasses various technolo-

gies and practices. Attempts to define CC typically focus on
some feature set, such as classes of technology, protocols,
patterns of use, and so on. Both Geelan [18] and Buyya,
Yeo, and Venugopal [7] include economies of scale in def-
initions of CC, for example reduction of the overall cost
of cloud infrastructure consumption by service consumers
compared with the equivalent resource requirements off-
cloud. The authors also focus on Service Level Agreement
(SLA) provision to define the level of quality of service ex-
pected from either party. Additionally, scalability and the
ability to optimise resource use empowers users to have full
control over their spending on IT services [46]. These re-
sources are typically consumed on a pay-per-use basis and
service providers are responsible for guaranteeing infras-
tructure to an agreed SLA.

CC has three models of service delivery: public,
private, and hybrid clouds [18]. The models differ in how
they are managed, so that a Public Cloud (PuC) involves
many customers accessing services from different locations
and using the same infrastructure (primarily the Internet).
The Private Cloud (PrC) is managed either by the organi-
sation itself or it may be outsourced. The implications for
an organisation with a PrC are significant, and this is espe-
cially important because access to its resources is more lim-
ited than a PuC. Facilitating the expansion of the PrC, using
the resources of the PuC, creates a Hybrid Cloud (HyC).

An important feature of the Cloud-based environ-
ment is a high level of availability for services, data and
other IT resources [31]. However, merely moving a com-
pany’s computing resources to a cloud platformwithout suf-
ficient feasibility assessment for accessibility and perfor-
mance may lead to bottlenecks. Technical bottlenecks or
network insufficiency can in turn lead to data unavailability
especially when data move between cloud nodes over net-
works with limited bandwidth. Database locking, lack of
storage capacity [for example, 44] and cache flushing can
also cause bottlenecks in Cloud-based systems.

This study is focussed the effect of PuCs on the
performance of relational databases in a Cloud-based envi-
ronment. To review existing literature, we consider some
of the wider issues associated with data base performance.
Li, Yang, Kandula, and Zhang [30] conduct a comparison
between PuCs and conclude that considerable differences
exist between PuC providers and this makes it difficult to
choose which provider to use. Further, Iosup, Ostermann,
Yigitbasi, Prodan, Fahringer, and Epema [22] suggest that
PuCs appear to suit small databases but that they demon-
strate deficiencies when heavy workloads (such as scientific
analytics) are involved, but Thakar, Szalay, Church, and

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 17

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

Terzis [44] and Hashem, Yaqoob, Anuar, Mokhtar, Gani,
and Khan [21] disagree and state that PuCs such as Amazon
Elastic Cloud Computing (EC2) and Microsoft SQL Azure
are suited to scientific tasks. Gunarathne, Wu, Qiu, and
Fox [20] add that PuCs can be used for big data tasks per-
formed on high dimensional data residing on heterogeneous
databases, where complex queries consume intensive com-
putational resources. But I/O performance inconsistencies
occur on PuCs due to the existence of shared infrastructure
(the Internet) and the potential for improperly tuned VMs
on hypervisors.

The RDBMS is a mainstay of enterprise informa-
tion systems management. Since Codd [11] established re-
lational theory, the approach to the structuring of data in
relations and defining simple relationships has shown itself
to be robust and flexible. In a study considering the up-
take of noSQL systems, Mc Kendrick [35] states that 77%
of the study’s sample consider structured data as central to
their daily business activities, and that 92% use RDBMS’
compared to 11% that have deployed NOSQL databases.
The likelihood of the RDBMS being fully replaced by other
types of database is not significant, however performance
issues still need to be resolved.

Query optimisation is an area that has been a fo-
cus of research, resulting in a significant body of knowl-
edge. Choosing an efficient query plan appears complex
because many variables are computed. For instance, the
RDBMS has to estimate the number of tuples that a query
selects and the number of tuples retrieved by every opera-
tion in the execution plan. The RDBMS also needs to esti-
mate the computational resources required for execution so
that CPU usage, I/O and memory allocation variables may
be estimated. Moreover, the RDBMS may compare plans
before it chooses one plan [10]. While query optimisation
approaches enable multiple paths to an efficient query exe-
cution [12], Shao, Liu, Li, and Liu [42] suggest that issues
exist with the performance of existing optimisation meth-
ods. The authors present a new optimisation system for
MS SQL Server based on a hierarchical queuing network
model. With this model, they achieve on average a 16.8%
improvement in the performance of SQL Server compared
with existing optimisation methods, and increases transac-
tion throughput by 40%.

This study is not directed at the development of
a new algorithm or assessing specific optimisations in a
distributed environment, query optimisation presents per-
sistent challenges [9]. However, a factor that emerges as
important to the study where to enable intermediate oper-
ations that may be intended to optimise the local process-
ing of a query and where data are moved between locations,
the distributed environment adds significant complexity [8].
This leads to more variables when choosing optimisation

plans [39, 27]. This is not a new problem and is not one
introduced by CC, for example Liu and Yu [32] claim that
in deciding whether or not it is the inefficient implemen-
tation or unsuitable execution plans chosen by RDBMS
that cause long processing queries, more investigation is
required. Their findings suggest that network overhead is
observed to be a major influence. More recently, in the CC
context, similar methods are employed for large dataset pro-
cessing while noSQL databases introduce new approaches
for query optimisation that appear to improve performance
[48, 9].

Traditionally, RDBMS’ have been deployed on the
client-server model, where database systems may commu-
nicate directly with the server and network. Changes to data
volume, infrastructure, and platform technologies suggest
that RDBMS’ appear to cope less well [48]. Conflicting
views as to whether RDBMS can still be used in the era of
large datasets exist. There has been a suggestion of archi-
tectural issues with the relational data model that reduce the
effectiveness of RDBMS when processing large datasets in
CC [31]. Supporting this view, Durham, Rosen, and Harri-
son [14] report that the data model can be a significant fac-
tor when handling large datasets. That is, by pulling data
across the public network, RDBMS do not perform effi-
ciently with big data and that impacts performance. The
implication is that joins between distributed tables may be
problematic and perhaps should be avoided. An alternative
view is that it is not the architecture that is the issue but they
way in which it has been deployed in the Cloud.

Relational database performance in
CC
We contend that the naive deployment of RDBMS in a
Cloud context has introduced additional performance chal-
lenges and so we summarise research on query perfor-
mance. In general, performance is done by benchmark-
ing tools, for example, Transaction Processing Performance
Council (TPC) tools that include SPECCpu benchmark,
which works to evaluate any given computer system and
recommend the best CPU for the workload [16], and TPC-C
that evaluates DBMS’ that suit Online Transaction Process-
ing (OLTP) applications [28]. The application of TPC-C to
measure the performance of databases is extensive but in
CC, there is little attention given to domain specific charac-
teristics as they relate to RDBMS performance.

RDBMS performance within the Cloud Dis-
tributed Database (CDD) context has not been well de-
scribed. For instance in their study, Minhas, Yadav, Aboul-
naga, and Salem [37] fail to take into account the effect of
the Internet and at 2Gb, the data size was small. Their study

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 18

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

concludes that running a database over virtualised environ-
ment creates I/O disk overhead but that such an overhead
does not have a large impact during the runtime of queries.
Thakar, Szalay, Church, and Terzis [44] have similar find-
ings with regard to CC affecting I/O performance. Also,
Ivanov, Petrov, and Buchmann [24] conclude that CC is
more suitable for read-mostly work and that for other pur-
poses like OLTP applications and data-intensive workload,
CC poses challenges. However, Bose, Mishra, Sethuraman,
and Taheri [5] find that although RDBMS’ perform better
off-Cloud, they achieve between 85% and 92% of native per-
formance in CC and conclude that CC is capable of han-
dling database-intensive workloads.

For the study, to assess RDBMS performance, a
number of approaches are considered. From these, we have
applied the following. In a performance evaluation of PuC
with a range of benchmarking tools, Iosup, et al [22] fo-
cus on CPU time, I/O, and memory hierarchy. Jackson, Ra-
makrishnan, Muriki, Canon, Cholia, Shalf, andWright [25]
address network latency in high performance computing
applications on PuC. Kohler and Specht [29] investigate
RDBMS that are partitioned over a cloud network and uses
two performance measures; runtime and the number of tu-
ples returned in a query. Thakar et al [44] investigate large
database query runtime performance in analytics. Lloyd,
Pallickara, David, Lyon, Arabi, and Rojas [33] use a statis-
tical model to examine CPU time and I/O operations in IaaS
for multi-tier applications. Baccelli and Coffman [2] also
use runtime with the addition of throughput to analyse the
performance of a distributed database, looking at the effect
of interrupted services from an update operation that had a
pre-emptive privilege over read operations. To avoid two-
phase commit, Anderson, Breitbart, Korth, and Wool [1],
among other measures, use transaction throughput to mea-
sure the effect of serialisation and transaction atomicity.
To examine the implementation of different strategies for
distributed lock management, Born [4] employ transaction
response time and transaction throughput. To study the
performance of timestamp ordering concurrency control,
Bouras and Spirakis [6] utilise wait time. And, to study
different replication models, Gray, Helland, O’Neil, and
Shasha [19] utilise wait time.

EXPERIMENTAL METHOD
To develop the experimental method, the follow-

ing measures from literature are used:

Duration: The time taken by a query to complete and is
calculated as the sum of processing time and com-
munication cost. As an indicator, this indicates if an

experiment presents issues and as a general rule, the
shorter the duration, the fewer the issues. However,
a longer duration indicates that further investigation
is required [2, 4, 29].

CPU Time: Indicates CPU consumption for the duration
of query execution and reported by the RDBMS. It
plays a central role once data arrive from disk and is
used to select join operators in a query [33, 1, 22].

Disk Operation: The number of physical reads and writes
that occur during a query. Since a relational database
is I/O bound, this measure provides observation data
[1].

Average I/O Latency: The average time an I/O operation
takes to finish. It reflects the effect that disk operation
has on performance [33, 1, 45, 22].

Logical Read: Represents the number of reads that take
place in memory. This measure may be partly asso-
ciated with CPU time so that when there is high CPU
consumption, it is accompanied by a large number
of logical reads, although that is not always the case.
Note, this measure is used when experiments reveal
special cases [1].

Network Traffic: The amount of data that travels a net-
work for each query [4, 25].

Wait Events: The events that systems wait for operations
to finish. For example, when the system waits for a
cloud network to complete an I/O operation [4, 6, 19,
1, 45].

To study how much the Internet infrastructure
negatively impacts RDBMS performance, the investigation
employs three database systems, SQL Server 2012, Ora-
cle 11g and MySQL 6.5. However, the manner in which
MySQL determines query plans makes it impossible to run
the study’s queries without significantly more computa-
tional resources for it alone. To provide distributed queries,
a federated table has been determined as most suitable,
however MySQL documentation states that all the records
of remote federated tables are fetched and filtering clauses
are applied locally. So for the data set used in this study,
at least 18 GB of memory is needed to host Fact_Table
(Fig. 1), as well as the time required for the data to traverse
the network. In addition, when trying to load the data that
had previously split into smaller datasets, MySQL seemed
unable to clear its memorywith each commit function, lead-
ing to server crashes. Since the study uses a standardised
VM configuration with 8GB of memory (Table 1), MySQL
is ruled out.

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 19

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

Fact_Table

*Dim_Programme

*Dim_Paper

*Dim_Class
Dim_Department*Dim_TSC_Category

Dim_Student Dim_Classicification

Dim_Intake Dim_Enrolment_Status
Dim_Enrolment_Type

Dim_Date Dim_Month

Figure 1: Star Schema

Table 1: Research environment configurations

Server Location Virtualization VM configuration
Amsterdam (Local) Xenon, Quad Core x 2.13Ghz Microsoft Windows 7 x64 Operating Sys-

tem, 4 CPU cores, 8 GB RAM, 200 GB of
disk space

Auckland (Remote) Xenon, Quad Core x 2.26Ghz Microsoft Windows 7 x64 Operating Sys-
tem, 4 CPU cores, 8 GB RAM, 200 GB of
disk space

Consequently two database systems are used, Mi-
crosoft SQL Server 2012 and Oracle 11g. The CDD in-
cludes a distributed database running in VMs on a PuC,
via the Internet (Table 1). To create a real time distributed
database, two systems are set up in geographically distant
locations; Amsterdam (Netherlands), the “local instance”
and Auckland (New Zealand), the “remote instance”. Each
database system and geographic location has two VMs. To
obtain comparable results, all four VMs have near identical
configurations for memory, CPU (there is slight difference
in CPU speed) and operating system. The VMs in Ams-
terdam contain Fact_Table and since experiments are run
from Amsterdam. The other two VMs in Auckland contain
the remaining dimensions tables.

In the experiments, the study replicates the real
world so that the results obtained can be generalised. To
that end a dataset from the university’s data warehouse is

used. The dataset is large at 120Gb of comma separated
values (CSV) files (Fact_Table alone was an 80Gb CSV
file), relational, and contains anonymised student Equiva-
lent Full Time Student (EFTS) records. The database con-
sists of thirteen tables in a star schema (Fig 1). While
smaller tables are imported directly to both databases, SQL
insert scripts are used to insert the data from the large tables
(Dim_Student and Fact_Table).

Fact_Table contains 400 million tuples, with a
raw data size of 80 GB. The data files for the large tables
are separated using unix split into files that contain some
10000 records each and then each record is concatenated
with a record insert script. The data files are then fed into
the database systems sequentially. If too many records are
inserted at once, the database systems tend to run short of
available memory, despite that each insert script is termi-
nated with a semi-colon, ;, or commit command. From

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 20

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

this problem and further limitations discovered while run-
ning complex queries, the dataset is reduced to 100 million
tuples, a size of 18GB.

In the experiment, nine SQL queries are run (Ta-
ble 2). Eight queries retrieve data and one (EXP9) is an
update query. Five queries implement inner join (EXP2,
EXP3, EXP4, EXP6, and EXP7) while the other three
queries implement left join (EXP5), full join (EXP8) and
right outer join (EXP1). The eight data retrieval queries use
at least two tables, and Fact_Table is used by every query
for implementing joins with the dimension tables. Thus in
every experiment, data traverses the network.

Query Complexity relates to the number of join
conditions and the use of clauses, such as sorting or ag-
gregating data, in a query. The complexity level in EXP1,
EXP4 and EXP5 are low. In EXP1, to look for tuples that fit
the joining column in Fact_Table (two columns read) and
the WHERE clause condition, the optimiser will perform at
least one table scan. EXP4 focuses on the collection of a
large volume of data, but with less complexity in the query
whereas EXP5, assuming that the network will affect per-
formance, is expected to take longer because two columns
from Fact_Table are involved.

EXP3 and EXP9 are of medium complexity. The
aim of EXP3 is to examine a common query that produces
an aggregated result. One can expect this query to run faster
than other experiments because it should return a small
dataset. However, EXP3 involves a considerable degree
of complexity with GROUP BY, HAVING and ORDER BY,
in addition to the joining of two tables. EXP9 aims to see
how, in order to perform an update, the databases will cope
when two distributed tables are joined. It is expected that
the query will not take long to complete because while the
query updates many tuples, two tables are joined with the
WHERE condition.

The complexity of EXP2, EXP6, EXP7 and EXP8
are high. In EXP2 there are more WHERE conditions and
more tables than any other experiment, therefore EXP2
should take longer to run. While this experiment produces
more data from tables that traverse the network, the actual
amount of data should not be large because there are two
WHERE conditions with the Fact_Table and an AND oper-
ator between WHERE conditions. In EXP6, two large tables
are joined, an AND operator is used as a filtering condition,
and this condition is based on a dimension table. In EXP7,
three tables are joinedwith theOR operator, theFact_Table
between two dimension tables. It is expected that this exper-
iment will take longer than the previous experiments, with
five columns and 100 million rows involved.

Details of the experiments are as follows:

EXP1 Implements a right outer join with two tables;

Dim_Student and Fact_Table. Two columns from
Fact_Table, Student_Demographic_Key and TO-
TAL_EFTS and one column from
Dim_Student, Student_Demographic_Key are
used in the query. The query contains only one con-
dition in the WHERE clause.

EXP2 Implements an inner join between four tables;
Dim_Enrolment_Type, Dim_Paper, Dim_Date,
and Fact_Table. The query uses nine columns from
the four tables with five columns from Fact_Table
and four columns from dimension tables. The query
uses six conditions in the WHERE clause, therefore it
is expected to take longer to run.

EXP3 Implements an inner join with two tables;
Dim_Paper and Fact_Table. The query uses four
columns, two from each table. The query uses
GROUP BY, HAVING, ORDER BY, and DISTINCT
clauses.

EXP4 Implements an inner join between two tables;
Dim_Student and Fact_Table. The query uses two
columns from two tables, where one column from
Dim_Student and one column from Fact_Table.
The expected amount of generated data is high.

EXP5 Implements a left join between two tables;
Dim_Enrolment_Type and Fact_Table. The query
uses three columns from two tables with two columns
from Dim_Enrolment_Type and one column from
Fact_Table. The query is likely to take a long time
to tun due to the volume of data moving through the
network.

EXP6 Implements an inner join between two tables;
Dim_Student and Fact_Table. The query uses four
columns, with two from each of the two tables. The
query has two WHERE clauses and large datasets.

EXP7 Implements an inner join between three tables;
Dim_Programme, Fact_Table, and Dim_Intake.
The query uses four columns from the dimension
tables and one from Fact_Table. The query has
joins between three tables and two conditions in the
WHERE clause. Fact_Table is used to link the di-
mension tables and five columns with 100 million
records are involved therefore, a large volume of data
will need to travel from Auckland to Amsterdam.

EXP8 Implements a full outer join between two ta-
bles Dim_Student and Fact_Table. The query
uses a column from Dim_Student and one from
Fact_Table with a full join and ORDER BY clause.

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 21

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

Table 2: Summary of Experiments

EXP TJ No.T No.CS No.CP QC
1 Right Outer Join 2 3 2 Low
2 Inner Join 4 9 6 High
3 Inner Join 2 4 3 Medium
4 Inner Join 2 2 3 Low
5 Left Join 2 3 3 Low
6 Inner Join 2 4 5 High
7 Inner Join 3 5 6 High
8 Full Outer Join 2 2 4 High
9 Inner Join 2 2 1 Medium

KEY:
TJ = Type of Join
No.T = Number of Tables involved in the query
No.CS = Number of Columns involved in Selection
No.CP = Number of Columns involved in Projection
QC = Query Complexity

EXP9 Implements an inner join on Fact_Table and
Dim_Paper to perform an UPDATE query. The
records to be updated are filtered with the WHERE
clause. In practice, this query caused issues with
SQL Server and so a variation is required in order
for the experiment to complete. The second approach
for SQL Server uses the value of Paper_Key from
Dim_Paper and sends the value of the retrieved data
fromFact_Table to the remote VM,where a separate
update procedure performs the update.

Data Collection
Data collection is conducted in two different ways. These
are outlined in the following sections.

Data from SQL Server

1. SQL Server profiler is set up on the Amsterdam (lo-
cal) and Auckland (remote) VMs to capture duration,
CPU time, number of logical reads, and number of
physical writes. The profiler does not provide the
number of physical reads nor does it compute the av-
erage I/O latency.

2. Average I/O latencies are calculated.

3. To capture physical reads in both VMs and the exe-
cution plan in Auckland, following query is used:

SELECT EXECUTION_COUNT, TOTAL_PHYSICAL
_READS, QP.QUERY_PLAN

FROM SYS.DM_EXEC_QUERY_STATS QS

CROSS APPLY SYS.DM_EXEC_QUERY_PLAN(QS.
PLAN_HANDLE) AS QP

4. Wait events are captured.

5. The execution plan in Amsterdam is obtained using
SQL Server’s “show execution plan” feature.

6. Network traffic is captured using SQL Server’s “show
client statistics” feature.

7. SQL Server uses TEMPDB in EXP8 and EXP9. The
following steps are taken to capture the number of I/O
operations:

(a) Calculate average I/O latencies during the
runtime of the experiments. Including all
databases the instance stores, such asTEMPDB
and MASTER.

(b) To calculate the number of physical reads, N ,
we must first determine the number of bytes
read in TEMPDB. Equ. 1 is used to convert
bytes into kilobytes (KB)

x =
y

1024
(1)

where,
y = Number of physical reads
x = Number of bytes read

The result is divided by 8KB, the default page
size in SQL Server.

N = x
8

(2)

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 22

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

Data collection in Oracle

1. The Snapshots section of the Automatic Workload
Repository (AWR) feature is used to capture perfor-
mance statistics. Of the large volume of performance
data collected, the following are used:

Top 5 Timed Foreground Events Provides infor-
mation about wait classes, such as network and
user I/O, and the proportion (%) of each wait
from the runtime.

Foreground Wait Class Used to get the average I/O
latency per physical read. If, however, there
are physical writes and I/O operations on TEM-
PDB, then Foreground Wait Events is used.

SQL Statistics Provides runtime and CPU time.
Segment Statistics Provides the number of logical

and physical reads and writes.

2. Oracle’s command, SET AUTOTRACE ON, is used
to get the execution plan from the local instance.
The command also provides performance statistics
related to the number of I/O operations that happen
in TEMPDB files and statistics similar to AWR.

3. The execution plan in Auckland is obtained by query-
ing Oracle’s view V$SQL_PLAN.

4. Oracle’s error log is used to collect data from when
an experiment fails.

Data Analysis
Analysis of the collected data is carried out using compar-
isons and statistical methods. The experiments use more
less identical system configurations, making comparisons
feasible, and the PuC providers deal with different work-
loads. Comparisons are carried out as follows:

1. Compare and explain Amsterdam and Auckland ex-
ecution plans.

2. Compare runtimes between systems.

3. Compare CPU time and explain its relevance to the
chosen execution plans.

4. If execution plans create a large number of logical
reads, then the values are compared.

5. Number of physical operations are compared and
their effects on runtime are quantified by measuring
the average I/O latency.

6. Wait events provide information about wait times.

Normal distribution of the data are checked and
a skewness test [34] is performed on duration, CPU time,
physical reads and network traffic. Table 3 shows the results
for the skewness test where the Z values are calculated by
the formula:

Z = Sk
SESk

(3)

where,

Z is skewness value in standard units.

Sk is the skewness value.

SESk is the standard error of the skewness value.

Table 3: Skewness test

Measure Skewness Z value
Duration (1.226/.378) = 3.24
CPU time (2.097/.378) = 5.54
Physical reads (1.793/.378) = 4.74
Network traffic (1.882/.564) = 3.33

Cramer and Howitt [13] suggest that in order to
statistically analyse a dataset the Z values must be in the
range ±1.96. The standard values in this research for skew-
ness (Table 3) are in the range 3–6. Thus data are posi-
tively skewed and, to remove skewness so that pragmatic
tests such as regression analysis can be carried out, loga-
rithm of data is applied. Since the data sets resulting from
this research are not large, extensive statistical analysis such
as factor analysis and full regression testing cannot be ap-
plied. Correlation testing is applied if two variables affect
each other, such as, to study the effect of network traffic on
runtime correlation testing. In cases such as CPU time and
run time, correlation testing is not suitable because CPU
time is part of the runtime so there is always a causal rela-
tionship.

To measure the effect that the Internet has on
RDBMS performance, we study the effect of execution
plans in a CC environment. Data sets are generated for two
different databases (SQL server and Oracle) and hence vari-
ables, such as CPU time, are independent. To check if there
is any difference between sample means, independent sam-
ple testing is used and visualised using a scatter plot. The
study uses simple regression testing because large data sets
are not generated and the model relies on only one indepen-
dent variable. Confidence intervals are also used to be sure
that the model covers 95% of data.

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 23

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

FINDINGS AND ANALYSIS

The study does not compare the two database sys-
tems used in the experiments but investigates relational
database performance in CDD. The reason for multiple
RDBMS’ is to reduce the effect of proprietary differences.
Whether one database system performs better than the other
is not relevant to the purpose of this research, and both sys-
tems differ considerably in the results.

Investigating relational database performance in
the cloud involves complicating factors including but not
limited to the virtualised environment, the requirements
necessary for RDBMS to execute queries, and the round-
trip between the nodes across the network. Interactions also
occur between nodes on the Internet that are unknown and
therefore are uncontrollable.

The following sections provide a brief discussion
about the results of EXP1–EXP7 and a detailed discussion
of the results of EXP8 and EXP9. The Execution Plans are
listed in Appendix .

In EXP8, Oracle did not complete the experiment
and another approach had to be considered in order to com-
plete the experiment. In EXP9, SQL Server was not able
to complete the experiment and alternative approach was
required. The, results of EXP8 and EXP9 are explained
by considering the execution plans to investigate how each
system approaches the query.

Table 4 lists the measures captured for each of the
experiments. The execution plans for each experiment have
beenmapped and comparisons aremade to highlight perfor-
mance issues. The performance statistics obtained are out-
lined and compared. Finally, wait events are detailed and
compared.

Table 4: Performance Measures

EXP RT CT DO A I/O L LR NT WE
1 ✓ ✓ ✓ ✓ ✓ ✓ ✓

2 ✓ ✓ ✓ ✓ ✓ ✓

3 ✓ ✓ ✓ ✓ ✓ ✓

4 ✓ ✓ ✓ ✓ ✓ ✓ ✓

5 ✓ ✓ ✓ ✓ ✓ ✓

6 ✓ ✓ ✓ ✓ ✓ ✓

7 ✓ ✓ ✓ ✓ ✓ ✓

8(SS) ✓ ✓ ✓ ✓ ✓ ✓ ✓

8(O) ✓ ✓ ✓ ✓ ✓ ✓

9(SS) ✓ ✓ ✓ ✓

9(O) ✓ ✓ ✓ ✓ ✓ ✓

Key:
RT = Runtime CT = CPU Time
DO = Disk operation A I/O L = Average I/O latency
LR = Logical Reads NT = Network Traffic
WE = Wait Event O = Oracle
SS = SQL Server

Experiment Results
As a total of runtime in EXP1 (Execution Plan 1), Oracle
took more time to complete than SQL Server (Table 5). Of
the runtime, a considerable portion of time, for example the
cumulative CPU time, is consumed by the VMs in Auck-
land. Oracle also performed more logical reads than SQL
Server. It appears that Oracle’s NESTED LOOPS performs
in a suboptimal manner in this configuration. However, the

Auckland instance of SQL Server used the SORT operator
eliminated a similar situation and led to a gain in perfor-
mance. Negatively, a large number of disk operations in
the Auckland instance of SQL Server may impact perfor-
mance, where SQL Server needs 10ms per read versus Or-
acle’s 6ms. Compare this with the Amsterdam VM disk la-
tency where the former consumes 12ms per read and latter
10ms per read. These variations may be attributable to the
slight difference in server configuration at each location.

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 24

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

Table 5: Comparison between RDBMS for EXP1 to EXP7

EXP N S PM
RT(sec) CT DO A I/O L(ms) LR

1 L SS 89 0.14 171 12 4590
O 115 4 890 10 2191245

R SS 79 21 2439171 10 2439292
O 97 18 2019545 6 2019840

2 L SS 359 5 2145 27
O 258 5 1453 11

R SS 348 25 2325816 11
O 210 25 2019474 8

3 L SS 111 0.156 7523 45
O 17420 268 3786 33

R SS 100 106 2325789 10
O 10685 28 2019573 14

4 L SS 21706 218 44316 56 43845
O 39319 753 988 14 200200451

R SS 21695 282 2523460 15 2474516
O 22352 150 2019541 15 2024368

5 L SS 14993 142 3 25
O 20268 99 5 23

R SS 14983 209 2474178 18
O 13406 52 2014059 15

6 L SS 22353 226 44316 54
O 37166 210 38287 27

R SS 20208 235 2523554 59
O 22019 125 2019573 38

7 L SS 34890 392 1246 208
O 72535 365 961 13

R SS 34884 443 2622482 14
O 38775 50 4629901 16

Key:
N = Node S = System
PM = Performance Measures RT = Runtime
CT = CPU time DO = Disk operation
A I/O L = Average I/O latency LR = Logical reads
O = Oracle SS = SQL Server
L = Local R = Remote

An examination of the I/O averages and the run-
times for both systems show that as the average I/O latency
increases the query takes longer to finish. In EXP2 (Exe-
cution Plan 2), SQL Server needed 359 seconds to run the
experiment compared to 259 seconds for Oracle (Table 5).
The CDD may add additional complexity to the execution
plan selection process where for instance, SQL Server’s se-
lection of MERGE JOIN forces the Auckland instance to
use a SORT operator to order the data, which adds perfor-
mance overhead. Although both databases process the same
number of tuples, there is considerable difference in CPU

consumption. However, while the systems use different join
operators, they consume an identical amount of CPU time,
indicating that the time needed to join tables increases as
the number of joins and volume of data increases. A rela-
tionship exists between disk operations (number of physical
reads) and the average I/O latency, such that the average I/O
latency in theAucklandVMsFact_Table is far less than the
average in the Amsterdam VMs (Dimension tables).

Disk activity may be instrumental in the poor per-
formance of relational databases in a cloud environment.
There is a significant variation in the runtime and CPU time

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 25

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

for both systems in EXP3 (Execution Plan 3). SQL Server
takes less than two minutes to finish, whereas Oracle takes
4.8 hours. Oracle consumes more CPU time in the Ams-
terdam VM than at Auckland. The Amsterdam Oracle VM
needs 268 seconds to execute EXP3 but the Auckland Or-
acle VM needs 28 seconds to perform its part. By con-
trast, SQL Server takes 106 seconds to process EXP3 in the
Auckland VM and only 0.156 seconds of CPU time is spent
in the Amsterdam SQL Server instance (Table 5). Further,
in both database systems, the CPU time appears to be high
which highlights the effect of processing a large dataset in a
relational CDD. While EXP2 shows a correlation between
the average I/O latency and duration, the results of EXP3
show no correlation. The Amsterdam VMs appear to suffer
from high I/O, and that reflects the reality of operating in a
PuC environment. In EXP3, SQL Server performed more
physical reads in the Auckland VM (taking 45ms) than it
did in EXP2 (taking 27ms). A similar pattern is observed
in Oracle but leads to a different result where the Auckland
VM average I/O latency in EXP3 (taking 14ms) is higher
than EXP2 (taking 8ms).

Disk operations (Physical reads) creates overhead
on runtime and therefore is an important factor. In EXP4
(Execution Plan 4), both systems execute in a nearly identi-
cal manner but the runtimemeasures differ; SQL Server fin-
ishes sooner than Oracle, which is 21706 seconds or 6 hours
for SQL Server and 39319 seconds or 7.2 hours for Oracle
(Table 5). Moreover, Oracle consumes 903 seconds CPU
time and SQL Server consumes 500 seconds. Oracle uses
the NESTED LOOPS join operator where one row from
Dim_Student is selected, and then the operator looks for
the matching row among 100 million tuples. Accompanied
by a high CPU time, Oracle in Amsterdam produces more
logical reads than SQL Server. Further examination of SQL
Server CPU time and logical reads suggests that MERGE
JOIN is faster than NESTED LOOPS, creating fewer logi-
cal reads. SQL Server in Amsterdam’s CPU consumption is
still relatively high (218 seconds) compared to theAuckland
CPU time (282 seconds) where a SORT operator is used.
Moreover, when the CPU time of both Auckland VMs are
compared, it can be seen that SQL Server consumes more
CPU time than Oracle. This is because Oracle does not use
the SORT operator.

Local network topology appears to be a factor
in performance, for example the Amsterdam VMs suffer
higher average I/O latency than the Auckland VMs. Exe-
cution Plan 5 shows differences in how EXP5 is executed.
For instance, although SQL Server consumes a higher CPU
time in Amsterdam, it still takes less time to complete than
Oracle. Table 5 illustrates how SQL Server needs 14993
seconds (4 hours and 16 minutes) whereas Oracle takes
20268 seconds (6 hours and 3 minutes). SQL Server’s

choice of MERGE JOIN requires a SORT operator (com-
pare with EXP4 where this consumes more CPU time than
when aHASH JOIN operator is used). InEXP3 andEXP4,
although the Auckland instances conduct high I/O traffic,
their average I/O latency was not as high as in Amsterdam.

In EXP6, the collected performance data suggests
significant variation between systems (Execution Plan 6).
SQL Server runs faster than Oracle with more than 4 hours
of difference between them. CPU time in Amsterdam in-
dicates that the SQL Server choice of MERGE JOIN con-
sumes more CPU time than Oracle’s choice of the HASH
MATCH JOIN operator. Moreover, it is clear that the use
of the SORT operator leads to a 25 second difference be-
tween Auckland VMs. Oracle’s consumption of CPU time
is 125 seconds, whereas SQL Server consumes 235 seconds
of CPU time (Table 5). When joining tables, it matters how
many tuples are to be joined and the choice of join opera-
tor. In this experiment and compared with EXP5, the SQL
Server installation in Amsterdam increases CPU consump-
tion by 6 seconds. This increase appears to be attributable
to operations over the cloud network. That is, SQL Server’s
choice of theMERGE JOIN operator appears to have added
processing overhead that has an effect when data needs to
be sorted at both ends (a choice that occurs in five experi-
ments) compared with Oracle that uses the MERGE SORT
JOIN operator only once, where there is an ORDER BY
clause. EXP6 presents the effect of shared computing re-
sources, causing the RDBMS to suffer. In the Amsterdam
instance of SQL Server, out of EXP1–EXP5, the highest
average I/O read latency was recorded in EXP5 (25ms) but
this increased to 54ms per read in EXP6. Additionally, the
number of physical reads increased to 44316 reads, com-
pared with 3 reads in EXP5. The duration for EXP6 is
longer time than EXP5, and EXP6 displays higher average
I/O latency. Overall, SQL Server shows higher average I/O
latency than Oracle, but Oracle runs for a longer period of
time.

Oracle needed 20 hours to run EXP7 versus 10
hours for SQL Server, even though SQL Server consumed
more CPU time than Oracle in both VMs. Further, the CPU
time required by SQL Server provides evidence that MERGE
JOIN is not an effective join option. By contrast, Oracle
employs HASH JOIN twice to join the data but takes 369
seconds of CPU time while SQL Server takes 392 seconds
of CPU time (Table 5). This does not mean that the op-
timiser performs below par but that its choice of MERGE
JOIN is less suitable because, on the one hand there are 100
tuples coming from the Auckland instance and on the other
hand, this operator needs sorted data in order to function.
So, the optimiser uses SORT in the Auckland VM. SORT
creates overhead, see the CPU time of the Auckland Ora-
cle VM, which is less than the Auckland SQL Server CPU

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 26

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

time. In addition, the average I/O latencies in EXP7 are the
highest where the Amsterdam SQL Server presented 208ms
per read. This contributes to a long running query, al-
though 0ms is reported as the average I/O latency per write.
The Auckland SQL Server VM experiences less average
I/O latency than in EXP6, even though it does more reads,
whereas evidence suggests that the Amsterdam SQL Server
is adversely affected by the public network. Such variations
indicate inconsistencies in RDBMS performance measures,
for example in all the experiments so far, Oracle in Amster-
dam experienced less average I/O latency than SQL Server,
suggesting that variations in performance can occur within
the same PuC service provider. Also, the use of the HASH
JOIN operator requires less time than the MERGE JOIN
operator, suggesting that HASH JOIN is more time effi-
cient than MERGE JOIN.

The next experiment provides more evidence that

the Cloud environment is a contributing factor in perfor-
mance reduction, especially when there is an extensive disk
activity for the ORDER BY operator is used. EXP8 joins
two large datasets and performs an ORDER BY operation.
After 12.32 hours running, Oracle did not complete and the
execution plans are lost (Table 6). Note that EXP7 ran for
longer without timing out. Additionally, the CPU consumes
410 seconds in Amsterdam and 59 seconds in Auckland
(due to the absence of a SORT operator). Also, SQL Server
takes the longest time to run and consumes the highest CPU
time. Comparing Amsterdam’s SQL Server CPU time in
EXP7 with EXP8, there is an increase from 392 seconds
to 424 seconds even though ORDER BY is performed on
disk. Part of the reason may be more logical reads in EXP8
(500000 reads) even though the instances in Auckland per-
formed more logical reads than Amsterdam. Table 6 shows
that the Auckland instances consume less CPU time.

Table 6: Comparison between RDBMS for EXP8 and EXP9

EXP N S PM
RT(sec) CT PR PW A I/O L(ms) LR

8 L SS 59118 424 54329 111 72 429115
O 44364 410 0 0 9 0

OSA 4548 51 901 16
R SS 58015 259 2808983 144 15 2688681

O 41373 59 4644618 0 40 4049424
OSA 4103 12 2019546 24

9 L SS 86554 166 0 1083 35 831865
O 1357 0.009 2 0 8 9

SSSA 500 0.03 2 0 22
R SS 0 882 2325815 360075 8 373065421

O 1352 239 8582166 2306460 14 11248000
SSSA 498 27 2325748 920824 33

Key:
N = Node S = System
PM = Performance Measures RT = Runtime
CT = CPU time PR = Physical Reads
PW = Physical Writes A I/O L = Average I/O latency
LR = Logical reads L = Local, Amsterdam
R = Remote, Auckland O = Oracle
SS = SQL Server OSA = Oracle Second Approach
SSSA = SQL Server Second Approach

Oracle not finishing EXP8 produces uncertainty
and so a different approach is taken. To minimise the ef-
fect of the network, the data volume is reduced from 18 GB
with 100 million tuples to 10 million. The Oracle Second
Approach (OSA) then finishes in 1 hour and 15minutes (Ta-
ble 6). Based on this time, the same query with 100 million
tuples would have taken 140 hours to run, or more than five

days. The execution plan shows that to sort data, there is ex-
tensive disk activity which influences runtime. The Auck-
land instance shows a high average I/O latency per read of
24ms, whereas Amsterdam needs 16ms per I/O read (read-
ing only the Index Table). Each disk write takes an average
of 39ms and for a read and takes an average of 9ms to finish.

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 27

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

Table 7: Runtime wait event percentage for SQLServer

EXP 1 2 3 4 5 6 7
EXP1 13.65 3.18 2.44 29.33 8.33 2.58
EXP2 34.62 1.98 9.09 30.59 7.08
EXP3 9 1.92 11.51 15.35 7.08
EXP4 45.99 65.21 16.24
EXP5 25.39 50.12 12.51
EXP6 43.93 63.32 15.77
EXP7 47.09 65.38 16.29
EXP8 47.56 65.88 32.12
EXP9 49.56 32.12

EXP9 (SSSA) 21.1 25.15 15.12 32.12
Key:
1 = Local OLEDB :Wait which occurs when SQL server calls the SQL server native client
OLEDB provider
2 = Local LCK_M_S: Time taken when the local instance is waiting to acquire a shared
lock. This lock prevents other transactions from modifying data, but allows multiple con-
current read (SELECT) operations. See https://documentation.red-gate.
com/display/SM4/LCK_M_S for detailed information.
3 = Local PAGEIOLATCH_SH: Time taken when the local node waits for buffer to be
accessible
4 = Remote PAGEIOLATCH_SH: Time taken when the remote node waits for buffer to
be accessible
5 = Remote CXPACKET: Time taken when the remote instance waits for local instance to
complete an operation. See http://serverfault.com/questions/290526/
high-cxpacket-wait-type-in-sql-server-even-with-maxdop-1

6 = Remote PAGEIOLATCH_EX: Time taken when the remote instance waits for data to
be written into the memory from the disk
7 = ASYNC_NETWORK_IO: Network related wait event
SSSA = SQL Server Second Approach

Table 8: Runtime wait event percentage for Oracle

EXP 1 2 3 4 5 6 7 8 9 10
EXP1 20.93 0.11 4.3 29.95 4.8 73.75
EXP2 68.82 20.11 2.81 68.28 24.65
EXP3 91.55 4.65 0.61 98.9 0.06 0.01
EXP4 94.06 3.2 0.53 98.22 0.61 0.48
EXP5 93.55 5.03 0.41 0.08 98.93 0.66 0.04
EXP6 95.71 3.42 99.04
EXP7 94.55 2.6 0.3 92.92 0.78 0.66 0.09
EXP8 92.94 1.92 93.41 0.5 0.79 0.2

EXP8 (OSA) 89.61 3.42 98.15 0.06 1.29
EXP9 46.23 4.36 4.16 17.02 25.95 1.91

Key:
1 = Local SQL* Net more data from dblink 2 = Local SQL* Net message from dblink

3 = Local SQL* Net more data to client 4 = Local disk file operations I/O
5 = Local db file sequential read 6 = Local db file scattered read
7 = Remote SQL* Net more data to client 8 = Remote db file sequential read
9 = Remote db file scattered read 10 = Remote direct path read
OSA = Oracle Second Approach

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 28

https://documentation.red-gate.com/display/SM4/LCK_M_S
https://documentation.red-gate.com/display/SM4/LCK_M_S
http://serverfault.com/questions/290526/high-cxpacket-wait-type-in-sql-server-even-with-maxdop-1
http://serverfault.com/questions/290526/high-cxpacket-wait-type-in-sql-server-even-with-maxdop-1

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

Moreover, in an indication that the effect of the
public network surpasses the I/O latency effect, the Ams-
terdam SQL Server instance in EXP8 spends nearly 48%
of its time waiting for 3633Mb of data to arrive (Table 7).
In the Auckland instance, a long wait period accrues due
to the parallelism operation but this seems unavoidable; the
parallel manager waits for CXPACKET, while waiting for
processors to finish their assigned work. In the meantime
in both VM’s, Oracle spends more than 90% of time waiting
for data to move via the network (Table 8).

When Oracle crashed the transaction logs of
both instances reported the error ORA-12170: TNS:
CONNECT TIMEOUT OCCURRED, “The server shut
down because connection establishment or communica-
tion with a client failed to complete within the allotted time
interval. This may be a result of network or system delays;
or this may indicate that a malicious client is trying to cause
a Denial of Service attack on the server” [40]. An analy-
sis indicates that Oracle attempts to write to a temp file
that plays a role in extending the delay, DIRECT WRITE
TEMP. This creates a wait of nearly 2% of the runtime.
However, reading this data again takes less than 1% of lo-
cal instance runtime. The I/O read in the remote instance
creates a total wait of 1.35% of the runtime, while the re-
maining 98.15% of its runtime (Table 8) is recorded as a
wait for the data to reach the local instance.

SQL Server demonstrates poor performance in
EXP9 compared with Oracle. SQL Server in Amsterdam
stopped running at 24 hours, therefore there is no execu-
tion plan and data are lost. Also, Oracle executed in Auck-
land instead of Amsterdam but this plan creates fewer com-
plexities than SQL Server’s approach. Oracle takes 22.61
minutes to run EXP9 (Table 6) vs SQL Server’s 24 hours
before the experiment was cancelled. Oracle in Amster-
dam consumed only 0.009 seconds of CPU time whereas
the Auckland VM shows the highest consumption of CPU
time. SQL Server consumes significant CPU time and the
reason is evident in the execution plan (Execution Plan 9).
SQL Server in Amsterdam reports a large number of logi-
cal reads and it consumed 166 seconds of CPU time. While
it is normal for a physical write to occur when an update
occurs, it is difficult to see why SQL Server has to perform
physical writes in Amsterdam. The subquery returns one
tuple from Dim_Paper which should not result in a phys-
ical write. We think that physical writes are because SQL
Server logs updates in the remote instance. Further, Ora-
cle’s physical writes in Auckland are a result of the update.
Before cancellation, SQL Server performed 630075 phys-
ical writes in Auckland. The average I/O latency reflects
only an average read latency where for SQL Server, the av-
erage write latency in Auckland is 26ms and 21ms for Ora-
cle.

Wait events in Table 7 show that network overhead
has a noticeable effect even when the volume transferred
is small. This is illustrated in EXP9 where SQL Server
shows high waiting periods. For example, SQL Server
fetches a tuple from Fact_Table and sends it to Amster-
dam to check whether or not the tuple adheres to the con-
ditions in the subquery with a wait time of 32% of the run-
time as a consequence. Tuples arrive sequentially at Am-
sterdam and then are processed, thus it is SQL Server’s
ANSNC_NETWORK_IO and the network that are implicated
in slower processing. Oracle demonstrates a similar pattern
where the network wait indicates that Amsterdam waits for
acknowledgement from the Auckland VM. Adding together
I/O operation wait periods in Auckland shows that the VM
spends a large part of the runtime (45%) in I/O operations,
thus creating a bottleneck.

While it is clear from EXP9 that performance is-
sues in SQL Server exist, it is difficult to determine where
the issues exist. To further investigate SQL Server’s ap-
proach to update queries, a different approach to EXP9
was undertaken. To ensure that the two tables are indi-
rectly joined, the second approach involved the removal
of the subquery and instead matching a selected value
from Paper_Key from Dim_Paper and passing that to
an update procedure located in the Auckland instance. In
SQL Server’s second approach, the Auckland instance then
pauses for different wait events (Table 7), for example 25%
of the runtime is spent on LATCH_EX, which is SQL Server
waiting for an exclusive latch. Note that the “wait does
not include buffer latches or transaction mark latches” [36].
This indicates that this wait event is not related to I/O opera-
tion or data. Further, the Auckland instance pauses for disk-
related waits; ASYNC_IO_COMPLETIONT (14.56%) and
PAGEIOLATCH_SH (25.15%). ASYNC_IO_COMPLETIONT
occurs when a task is waiting for I/Os to finish [36] and
PAGEIOLATCH_SH waits for data to be written to mem-
ory [36]. Therefore with this approach, EXP9 is I/O bound.

Influence of PuC Network
The aim of the study is to identify where it is that relational
database performance in a CC environment is negatively
affected. To learn where performance breakpoints may
be, two RDBMS have run a series of experiments so that
database, server, and network data can be collected. The
data analysis indicates where there are weaknesses in per-
formance and from that, the log data are interrogated to find
what the RDBMS’ did at the time. The analyses demon-
strate that relational databases fall victim to two factors: the
methods used by RDBMS when executing queries over the
Internet and creating network overheads, and the PuC envi-

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 29

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

ronment provides conditions for poor performance.
While the collected data appears at first inconsis-

tent (Table 9), overall they indicate the effect of the PuC.
That is, although RDBMS are I/O bound there appears to
be a weak relationship between number of physical reads
and high average I/O latency in a CC environment where
the variable patterns suggest differing levels of WAN over-

head. For example, although SQL Server transfers a higher
volume of data in EXP6 and EXP7, it finishes faster than
Oracle (Table 10), whereas in EXP2 with a larger dataset,
SQL Server takes longer than Oracle, and in EXP7 SQL
Server transfers more data than in EXP8 but finishes faster.
It appears that when more than 22MB is transferred, perfor-
mance drops (Table 9 and Table 10).

Table 9: Average I/O latency vs Number of physical reads

EXP S LPR LA I/O L(ms) RPR RA I/O L(ms)
EXP1 SS 171 12 2439171 10

O 890 10 2019840 6
EXP2 SS 2145 27 2325816 12

O 1453 11 2019474 8
EXP3 SS 7523 45 2325789 10

O 3786 33 2019573 14
EXP4 SS 44316 56 2523460 15

O 988 14 2019541 15
EXP5 SS 3 25 2474178 18

O 5 23 2014059 15
EXP6 SS 44316 54 2523554 59

O 38287 27 2019573 38
EXP7 SS 1246 208 2622482 14

O 916 13 4629901 16
EXP8 SS 54329 72 2808983 15

O N/A N/A 4644618 40
EXP8 (OSA) O 991 16 2020096 24

EXP9 SS N/A 35 2325815 8
O 2 8 8582166 14

EXP9 (SSSA) SS 2 22 2325748 33
Key:
S = System LPR = Local physical read
LA I/O L = Local average I/O latency RPR = Remote physical read
RA I/O L = Remote average I/O latency SS = SQL Server
O = Oracle SSSA = SQL Server Second Approach
OSA = Oracle Second Approach

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 30

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

Table 10: Network traffic vs Runtime

EXP System Network Traffic (MB) Runtime (sec)
EXP1 SS 0.162 89

O 10 115
EXP2 SS 125 359

O 21 258
EXP3 SS 0.244 111

O 1011 17420
EXP4 SS 1242 21706

O 1584 39319
EXP5 SS 823 14993

O 1019 20268
EXP6 SS 2864 22353

O 2572 37166
EXP7 SS 8613 34890

O 8198 72535
EXP8 SS 3633 59118

O N/A N/A
EXP8 (OSA) O 187 4548
Key:
SS = SQL Server O = Oracle OSA = Oracle Second Approach

Table 11: Correlation between Duration and Network traffic

Network traffic Log
Duration Pearson Correlation .928∗∗

Sig.(2-tailed) .000
N 16

∗∗ = Correlation is significant at the level 0.01 level (2-tailed)

Table 12: Simple regression test

Coefficients a

Model Ustd Coeff. Std Coeff. t Sig. Conf. Interval
B Std. Error Beta LB UB

1 C -4.887 1.462 -3.344 0.005 -8.002 -1.753
NTL 0.692 0.074 0.928 9.325 0.000 0.533 0.851

a = Dependent Variable: durationLog
Key:
Ustd Coeff. = Unstandardised Coefficients Std Coeff. = Standardised Coefficients
Conf. Interval = 95% Confidence Interval for B LB = Lower Bound
UB = Upper Bound C = Constant
NTL = networktrafficLog

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 31

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

The study is conducted on a PuC using workloads
that would make infrastructure effects obvious. For exam-
ple, in EXP3, for SQL Server to complete, a wait of 12.43%
of runtime for I/O operations is experienced (Table 9). Ad-
ditionally, in EXP2 and EXP9, Oracle waits of 27.46% and
45% of runtime for I/O reads to finish respectively . In
EXP3, Oracle requires the data to be brought over the PuC
before it processes the query, even though the count opera-
tion could be performed on the table in Auckland. Due to
the lack of network capacity, performance issues are created
in EXP3 and Oracle takes significantly longer to run than
SQL Server (Table 10).

To summarise briefly, both systems wait for the
PuC to deliver data but for Oracle, the network wait ap-
pears overwhelming. Even when larger datasets are in-
volved, SQL Server queries take less time and this is re-
flected in wait related events that never go beyond 50% of
the runtime, whereas Oracle never drops below 60%. To
learn more, correlation and regression tests are carried out.
A strong correlation between duration and network traffic is
apparent (Table 11). A scatter plot (Figure 2) shows a trend
between duration and network traffic which indicates that
duration increases as network traffic increases. Moreover,
the plot shows the relationship is not directly linear and that
there exists a degree of randomness with a cluster at the top
of the plot. The cluster indicates a strong relationship be-
tween duration and network traffic at higher volumes of data
transfer.

Figure 2: Duration vs Network traffic

To illustrate how an execution plan selection may
impact performance, inEXP8Oracle crashes at the 44364th
second from execution start (˜12.32 hours) because, to exe-
cute each query, Oracle downloads the required tables and
more than 90% of VM time is spent waiting for data to

traverse the PuC (Table 8). Additionally, SQL Server’s
execution of EXP9 causes a long-running query and the
highest CPU time of all nine experiments. The steps that
SQL Server undertakes, which uses KEYSET CURSOR,
suggests that including a sub-query in update statements
in SQL Server causes significant performance issue in PuC
and when the sub-query is removed in EXP9 SSAA, per-
formance improves.

An initial look at the regression test (Table 12)
appears to strengthen the argument for a relationship be-
tween network traffic and duration. With 95% confidence,
every unit of increase in network traffic increases duration
between 0.533 and 0.851. However, note that the curve in
Figure 3 shows a more pronounced curvature than is evi-
dent in Figure 2. This indicates a degree of non-linearity in
the data. The relationship may be explained by the effect of
I/O latency in the PuC environment.

Figure 3: Normality of simple regression test

CONCLUSION
The study presents limiting factors, for example

the research originally aimed to use a larger dataset but of
the systems that actually completed, most of the experi-
ments took a long time to run and sometimes they did not
finish due to technical failures. Consequently, experiments
could not be easily compared. Also, due to time constraints
there is no control experiment on n-tier architecture. This
would have provided a greater degree of surety about the

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 32

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

effect of the PuC. Additionally, the experiments are con-
ducted using a star schema not used in a transaction process-
ing system. While joins are included in the queries, we did
not feel this would unduly affect the query results and the
significant amount of data provided was preferred. Further,
the RDBMS’s in the CDD are used in a non-optimised en-
vironment compared with Amazon’s EC2 and Microsoft’s
SQL Server on Azure where resources are heavily opti-
mised. This was a deliberate step in order to demonstrate
the effect of the Cloud on RDBMS.

Since the study includes no specific performance
enhancements, the opportunity exists to redo the experi-
ments both on and off the Cloud. Architectural issues with
the relational model on the Cloud may still need to be inves-
tigated. To that end, additional experiments may be done on
non-relational database systems such as NOSQL or graph
database environments. We have investigated opportunities
for replicating the experiments in a graph database (Neo4j)
as a transaction processing system, where a join in a rela-
tional database is somewhat equivalent to an edge traversal
between nodes in a graph database. Elements (vertices and
edges) maintain direct reference to their adjacent elements,
which makes traversing a graph structure within a graph
database fast and efficient [41]. The issue at this time is the
lack of a consistent or cross application querying language
for graph databases. Therefore we are also investigating the
development of a structured query language for graphs.

It is usual for RDBMS to be deployed on specifi-
cally designed infrastructure with sufficient network band-
width and consequently, RDBMS generally perform better
on n-tier architecture [17, 15, 44, 5, 29, 3]. However, since
PuC includes an unknown and heterogeneous mix of infras-
tructure elements, distributed RDBMS suffer from perfor-
mance issues and determining specific problem areas is dif-
ficult. Thus the study identifies break points when operat-
ing an RDBMS on a PuC. To identify specific problem ar-
eas, RDBMS query execution plans are investigated, specif-
ically noting the effect between network traffic and query
runtime. The study finds that individual product’s selec-
tion of query execution plan greatly affects performance in
different ways. For example, Oracle shows a tendency to
transfer large volumes of data before undertaking a query,
whereas SQL Server tends to wait for a remote event to
complete before continuing a query. Also, sub-queries cre-
ate performance issues for both of the systems. Further,
when no joins are included in the query, then while these
issues are not observed, the PuC has a negative impact on
performance. This factor was emphasised with the large
dataset used in the experiments.

REFERENCES

[1] Anderson, T., Breitbart, Y., Korth, H., and Wool, A.
Replication, consistency, and practicality: are these
mutually exclusive? ACM SIGMOD Record, Vol-
ume 27, Number 2, 1998, pp 484–495.

[2] Baccelli, F. and Coffman, E. G. A data base replica-
tion analysis using an m/m/m queue with service in-
terruptions. ACM SIGMETRICS Performance Eval-
uation Review, Volume 11, Number 4, 1982, pp 102–
107.

[3] Benson, T., Akella, A., andMaltz, D. Network traffic
characteristics of data centers in the wild. In Pro-
ceedings of the 10th ACM SIGCOMM conference
on Internet measurement, New Delhi, India. ACM.
2010, pp 267–280.

[4] Born, E. Analytical performance modelling of lock
management in distributed systems. Distributed Sys-
tems Engineering, Volume 3, Number 1, 1996, p 68.

[5] Bose, S., Mishra, P., Sethuraman, P., and Taheri,
R. Benchmarking database performance in a vir-
tual environment, Springer, Berlin Heidelberg, 2009,
pp 167–182.

[6] Bouras, C. and Spirakis, P. Performance modeling
of distributed timestamp ordering: Perfect and im-
perfect clocks. Performance evaluation, Volume 25,
Number 2, 1996, pp 105–130.

[7] Buyya, R., Yeo, C., and Venugopal, S. Market-
oriented cloud computing: Vision, hype, and real-
ity for delivering it services as computing utilities.
In 10th IEEE International Conference on High Per-
formance Computing and Communications, Dalian,
China. IEEE., 2008, pp 5–13

[8] Chaudhuri, S. An overview of query optimization
in relational systems. In Proceedings of the sev-
enteenth ACM SIGACT-SIGMOD-SIGART sympo-
sium on Principles of database systems, Seattle, WA,
USA. ACM, 1998, pp 34–43.

[9] Chaudhuri, S. What next?: a half-dozen data man-
agement research goals for big data and the cloud.
In Proceedings of the 31st symposium on Principles
of Database Systems, Scottsdale, AZ, USA. ACM,
2012, pp 1–4.

[10] Chaudhuri, S., Dayal, U., and Narasayya, V. An
overview of business intelligence technology. Com-
munications of the ACM, Volume 54, Number 8,
2011, pp 88–98.

[11] Codd, E. F. A relational model of data for large
shared data banks. Communications of the ACM,
Volume 13, Number 6, 1970, pp 377–387.

[12] Connolly, T. and Begg, C. Database systems: a

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 33

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

practical approach to design, implementation, and
management. Pearson Education, Harlow, England,
2005.

[13] Cramer, D. and Howitt, D. The Sage dictionary of
statistics: a practical resource for students in the so-
cial sciences. Sage, Thousand Oaks, 2004.

[14] Durham, E., Rosen, A., and Harrison, R. Opti-
mization of relational database usage involving big
data a model architecture for big data applications.
In 2014 IEEE Symposium on Computational Intelli-
gence and Data Mining (CIDM), Orlando, FL, USA.
IEEE, 2014, pp 454–462

[15] Eriksson, P. A new approach for enterprise ap-
plication architecture for financial information sys-
tems: An investigation of the architectural implica-
tions of adopting serialization and RPC frameworks,
noSQL/hybrid data stores and heterogeneous com-
puting in financial information systems. Masters the-
sis, School of Computer Science and Communica-
tion, KTH Royal Institute of Technology, 2015.

[16] Feuerlicht, G. and Pokorný, J. Can Relational DBMS
Scale Up to the Cloud?, Springer, New York, 2013,
pp 317–328.

[17] Frerking, G., Blanton, P., Osburn, L., Topham, J.,
DelRossi, R., and Reisdorph, K. U.S. patent appli-
cation 10/935,514, 2004.

[18] Geelan, J. Twenty-one experts define cloud comput-
ing. Cloud Computing Journal, Volume 1, Number
4, 2009, pp 1–5.

[19] Gray, J., Helland, P., O’Neil, P., and Shasha, D. The
dangers of replication and a solution. ACMSIGMOD
Record, Volume 25, Number 2, 1996, pp 173–182.

[20] Gunarathne, T., Wu, T., Qiu, J., and Fox, G. Mapre-
duce in the clouds for science. In 2010 IEEE Sec-
ond International Conference on Cloud Computing
Technology and Science (CloudCom), Indianapolis,
IN, USA. IEEE, 2010, pp 565–572.

[21] Hashem, I., Yaqoob, I., Anuar, N., Mokhtar, S.,
Gani, A., and Khan, S. The rise of “big data” on
cloud computing: review and open research issues.
Information Systems, Volume 47, Jan, 2015, pp 98–
115.

[22] Iosup, A., Ostermann, S., Yigitbasi, M., Prodan, R.,
Fahringer, T., and Epema, D. Performance analysis
of cloud computing services for many-tasks scien-
tific computing. IEEE Transactions on Parallel and
Distributed Systems, Volume 22, Number 6, 2011,
pp 931–945.

[23] Ivanov, I. The Impact of Emerging Computing
Models on Organizational Socio technical System,
Springer, Berlin Heidelberg, 2013, pp 3–19.

[24] Ivanov, T., Petrov, I., and Buchmann, A. A survey on

database performance in virtualized cloud environ-
ments. International Journal of Data Warehousing
and Mining, Volume 8, Number 3, 2012, pp 1–26.

[25] Jackson, K., Ramakrishnan, L., Muriki, K., Canon,
S., Cholia, S., Shalf, J., and Wright, N. Performance
analysis of high performance computing applications
on the amazon web services cloud. In IEEE Second
International Conference on Cloud Computing Tech-
nology and Science (CloudCom), Indianapolis, IN,
USA. IEEE, 2010, pp 159–168

[26] Khajeh-Hosseini, A., Greenwood, D., and Som-
merville, I. Cloudmigration: A case study of migrat-
ing an enterprise it system to IaaS. In IEEE 3rd In-
ternational Conference on Cloud Computing, Wash-
ington, DC, USA. IEEE, 2010, pp 450–457.

[27] Khan, M. and Khan, M. Exploring query optimiza-
tion techniques in relational databases. International
Journal of Database Theory and Application, Vol-
ume 6, Number 3, 2013, pp 11–20.

[28] Kiefer, T., Schlegel, B., and Lehner, W. Multe: a
multi-tenancy database benchmark framework. In
Technology Conference on Performance Evaluation
and Benchmarking, New Delhi, India. Springer,
2012, pp 92–107

[29] Kohler, J. and Specht, T. Vertical query-join bench-
mark in a cloud database environment. In Second
World Conference on Complex Systems, Agadir, Mo-
rocco. IEEE, 2014, pp 581–586.

[30] Li, A., Yang, X., Kandula, S., and Zhang, M. Cloud-
cmp: comparing public cloud providers. In Pro-
ceedings of the 10th ACM SIGCOMM conference on
Internet measurement, Melbourne, Australia. ACM,
2010, pp 1–14.

[31] Litchfield, A. and Althouse, J. A systematic review
of cloud computing, big data and databases on the
cloud. In Twentieth Americas Conference on Infor-
mation Systems, Savannah, USA.AIS, 2014, pp 1–10

[32] Liu, C. and Yu, C. Performance issues in dis-
tributed query processing. IEEE Transactions on
Parallel and Distributed Systems, Volume 4, Num-
ber 8, 1993, pp 889–905.

[33] Lloyd, W., Pallickara, S., David, O., Lyon, J., Arabi,
M., and Rojas, K. Performance implications of
multi-tier application deployments on infrastructure-
as-a-service clouds:towards performance modeling.
Future Generation Computer Systems, Volume 29,
Number 5, 2013, pp 1254–1264.

[34] Martin, W. E. and Bridgmon, K. D. Quantitative and
statistical research methods: From hypothesis to re-
sults, John Wiley & Sons, San Francisco, CA, USA,
2012.

[35] McKendrick, J. Big data, big challenges, big op-

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 34

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

portunities: 2012 IOUG big data strategies survey.
Technical report, Unisphere Research, Murray Hill,
New Providence, NJ, 2012.

[36] Microsoft Corp. Buffer management,
https://technet.microsoft.com/en-us/library/
aa337525%28v=sql.105%29.aspx, July, 2015.

[37] Minhas, U., Yadav, J., Aboulnaga, A., and Salem, K.
Database systems on virtual machines: How much
do you lose? In IEEE 24th International Confer-
ence on Data Engineering Workshop, 2008, Cancun,
Mexico. IEEE, 2008, pp 35–41.

[38] Moens, H. and De Turck, F. Shared resource
network-aware impact determination algorithms for
service workflow deployment with partial cloud of-
floading. Journal of Network and Computer Appli-
cations, Volume 49, Number 1, 2015, pp 99–111.

[39] Mullins, C. S. Distributed query optimization. Tech-
nical Support, July, 1996, pp 1–3.

[40] Oracle Corp. Database error messages,
https://docs.oracle.com/cd/B19306_01/server.
102/b14219/net12150.htm, July, 2015.

[41] Rodriguez, M. A. and Neubauer, P. Constructions
from dots and lines. Bulletin of the American Soci-
ety for Information Science and Technology, Volume
36, Number 6, 2010, pp 35–41.

[42] Shao, J., Liu, X., Li, Y., and Liu, J. Database perfor-
mance optimization for SQL Server based on hierar-
chical queuing network model. International Jour-
nal of Database Theory and Application, Volume 8,
Number 1, 2015, pp 187–196.

[43] Tewari, P. Query optimization strategies in dis-
tributed databases. International Journal of Ad-
vances in Engineering Sciences, Volume 3, Number
3, 2013, pp 23–29.

[44] Thakar, A., Szalay, A., Church, K., and Terzis, A.
Large science databases, are cloud services ready for
them? Scientific Programming, Volume 19, Number
2—3, 2011, pp 147–159.

[45] Thanos, C., Bertino, E., and Carlesi, C. The effects
of two-phase locking on the performance of a dis-
tributed database management system. Performance
Evaluation, Volume 8, Number 2, 1988, pp 129–157.

[46] Vaquero, L. M., Rodero-Merino, L., Caceres, J., and
Lindner, M. A break in the clouds: towards a cloud
definition. ACM SIGCOMMComputer Communica-
tion Review, Volume 39, Number 1, 2008, pp 50–55.

[47] Weins, K. Cloud Computing trends: 2016
state of the cloud survey, http://www.
rightscale.com/blog/cloud-industry-insights/

cloud-computing-trends-2016-state-cloud-survey,
2016.

[48] Zhang, Y., Yu, L., Zhang, X., Wang, S., and Li, H.
Optimizing queries with expensive video predicates
in cloud environment. Concurrency and Computa-
tion: Practice and Experience, Volume 24, Number
17, 2012, pp 2102–2119.

AUTHOR BIOGRAPHY
Awadh Althwab completed his Master of Com-

puter and Information Sciences with First Class Honours
at AUT. For his research thesis, he was also received the
Dean’s List award. He is presently a research student at the
Australian National University (ANU) where he is studying
massive graph analytics.

Dr Alan T Litchfield (corresponding author) is
Director of the Service and Cloud Computing Research
Lab (SCCRL), at the Auckland University of Technology
(AUT). He is a partner in a consulting firm that provides
specialised services to corporates, government departments
and military, is President of the Association for Informa-
tion Systems (AIS) Special Interest Group on Philosophy in
Information Systems, founding Programme Leader for the
Master of Service Oriented Computing (MSOC), member
of the AUT Programmes and Academic Review Commit-
tee (PARC). Dr Litchfield is member of the Institute of IT
Professionals (MIITP), Institute of Electrical and Electron-
ics Engineers (IEEE), Association for Computing Machin-
ery (ACM), International Institute for Information Design
(IIID), TeX Users Group (TUG), and Association for Infor-
mation Systems (AIS). His areas of research interest cover
service and cloud computing and the philosophy of science
and especially in applied areas of information systems re-
search. Most recently, he has been leading research into
decentralised and distributed software architectures and ap-
plications of blockchains in medical records management,
software licensing, utilities management, systems authen-
tication and authorisation, and on the Internet of Things
(IoT).

Chandan Sharma is a research student in the
School of Engineering, Computer and Mathematical Sci-
ences , Auckland University of Technology. Having com-
pleted theMaster of Service Oriented Computing with First
Class Honours in 2016, he is now a PhD student researching
Distributed Computing, Database systems, Formal Meth-
ods and Theory of computation. He contributed to this pa-
per in his spare time.

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 35

https://technet.microsoft.com/en-us/library/aa337525%28v=sql.105%29.aspx
https://technet.microsoft.com/en-us/library/aa337525%28v=sql.105%29.aspx
https://docs.oracle.com/cd/B19306_01/server.102/b14219/net12150.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14219/net12150.htm
http://www.rightscale.com/blog/cloud-industry- insights/cloud-computing-trends-2016-state- cloud-survey
http://www.rightscale.com/blog/cloud-industry- insights/cloud-computing-trends-2016-state- cloud-survey
http://www.rightscale.com/blog/cloud-industry- insights/cloud-computing-trends-2016-state- cloud-survey

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

APPENDIX A: EXPERIMENT SQL QUERIES
This appendix provides the SQL queries used in the experiments.

EXP1 SELECT D.STUDENT_DEMOGRAPHICS_KEY, F.TOTAL_EFTS
FROM DIM_STUDENT_DEMOGRAPHICS D
RIGHT OUTER JOIN MYLINK.LOCAL.DBO.FACT_TABLE F
ON D.STUDENT_DEMOGRAPHICS_KEY = F.STUDENT_DEMOGRAPHICS_KEY
WHERE F.TOTAL_EFTS >0;

EXP2 SELECT F.STUDENT_DEMOGRAPHICS_KEY,P.PAPER_KEY, D.CALENDAR_YEAR,
E.ENROLMENT_TYPE_KEY, E.ENROLMENT_TYPE_GROUP_DESC,
P.TEACH_DEPT_CODE

FROM DIM_PAPER P, DIM_DATE D, DIM_ENROLMENT_TYPE E,
MYLINK.LOCAL.DBO.FACT_TABLE F

WHERE P.PAPER_KEY = F.PAPER_KEY
AND E.ENROLMENT_TYPE_KEY = F.ENROLMENT_TYPE_KEY
AND D.DATE_KEY = F.DATE_KEY
AND F.PAPER_KEY =13362
AND F.ENROLMENT_TYPE_KEY = 33
AND D.CALENDAR_YEAR BETWEEN 2000 AND 2013;

EXP3 SELECT D.PAPER_KEY,PAPER_FULL_DESC, COUNT(DISTINCT
F.STUDENT_DEMOGRAPHICS_KEY) AS COUNTOFENROLLEDSTUDENTS

FROM DIM_PAPER D
INNER JOIN FACT_TABLE F
ON D.PAPER_KEY = F.PAPER_KEY
GROUP BY D.PAPER_KEY,PAPER_FULL_DESC
HAVING COUNT(DISTINCT F.STUDENT_DEMOGRAPHICS_KEY) >=5
ORDER BY COUNTOFENROLLEDSTUDENTS DESC;

EXP4 SELECT D.STUDENT_DEMOGRAPHICS_KEY, F.PAPER_KEY, F.DATE_KEY
FROM DIM_STUDENT_DEMOGRAPHICS D
INNER JOIN FACT_TABLE F
ON D.STUDENT_DEMOGRAPHICS_KEY = F.STUDENT_DEMOGRAPHICS_KEY;

EXP5 SELECT F.STUDENT_DEMOGRAPHICS_KEY ,D.ENROLMENT_TYPE_KEY,
D.ENROLMENT_TYPE_GROUP_DESC FROM DIM_ENROLMENT_TYPE D

LEFT JOIN FACT_TABLE F
ON D.ENROLMENT_TYPE_KEY = F.ENROLMENT_TYPE_KEY
WHERE D.ENROLMENT_TYPE_GROUP_DESC = ’INTERNATIONAL STUDENTS’;

EXP6 SELECT D.STUDENT_DEMOGRAPHICS_KEY, F.PAPER_KEY, F.DATE_KEY,D.AGE,
D.LAST_SECONDARY_SCHOOL_COUNTRY FROM DIM_STUDENT_DEMOGRAPHICS D

INNER JOIN FACT_TABLE F
ON D.STUDENT_DEMOGRAPHICS_KEY = F.STUDENT_DEMOGRAPHICS_KEY
WHERE D.AGE > 25 AND F.LAST_SECONDARY_SCHOOL_COUNTRY = ’NEW ZEALAND’;

EXP7 SELECT F.STUDENT_DEMOGRAPHICS_KEY, F.PAPER_KEY, F.DATE_KEY,
P.PROGRAMME_KEY, P.PROGRAMME_FULL_DESC, I.INTAKE_YEAR

FROM DIM_PROGRAMME P
INNER JOIN FACT_TABLE F ON P.PROGRAMME_KEY = F.PROGRAMME_KEY

INNER JOIN DIM_INTAKE I ON F.INTAKE_KEY = I.INTAKE_KEY
WHERE P.PROGRAMME_FULL_DESC= ’BACHELOR OF ARTS AND

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 36

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

BACHELOR OF BUSINESS CONJOINT DEGREES’
OR I.INTAKE_YEAR>1990;

EXP8 SELECT D.STUDENT_DEMOGRAPHICS_KEY, F.PAPER_KEY, F.DATE_KEY,
F.ENROLMENT_STATUS_FIRST_DAY FROM DIM_STUDENT_DEMOGRAPHICS D

FULL JOIN FACT_TABLE F
ON D.STUDENT_DEMOGRAPHICS_KEY = F.STUDENT_DEMOGRAPHICS_KEY
ORDER BY D.STUDENT_DEMOGRAPHICS_KEY;

EXP9 Note: different queries due to how the systems do updates.
Oracle query:

UPDATE (SELECT F.PAPER_KEY FROM FACT_TABLE@MYLINK F
WHERE F.PAPER_KEY IN

(SELECT D.PAPER_KEY FROM DIM_PAPER D WHERE D.PAPER_KEY= ’13362’))
SET PAPER_KEY = ’666666’);

SQL Server query:

UPDATE FACT_TABLE
SET PAPER_KEY = ’444444’
WHERE PAPER_KEY IN (SELECT D.PAPER_KEY FROM DIM_PAPER D
WHERE D. PAPER_KEY = ’13362’);

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 37

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

APPENDIX B: EXECUTION PLANS

Execution Plan 1: Experiment 1
SQL Server, Amsterdam Oracle, Amsterdam

Input: Clustered Index Seek on
(Dim_student).(PK_Student_Key), Fact_Table

Output: Query Result as Result
1: Run Nested Loops on

Dim_student ⋊Fact_Table
2: if Tuples meets join condition then
3: Select Tuples
4: Print Result
5: else
6: Discard Tuples
7: end if

Input: Index Unique Scan on
(Dim_student).(PK_Student_Key), Fact_Table

Output: Query Result as Result
1: Run Nested Loops on

Dim_student ⋊ Fact_Table
2: if Tuples meets join condition then
3: Select Tuples
4: Print Result
5: else
6: Discard Tuples
7: end if

SQL Server, Auckland Oracle, Auckland

Input: Full Table Scan on Fact_Table, Dim_student
Output: Query Result as Result
1: Run Sort Operator on Fact_Table
2: Run Nested loops on
Fact_Table⋊ Dim_student

3: Select Tuples
4: Print Result

Input: Full Table Scan on Fact_Table, Dim_student
Output: Query Result as Result
1: Run Nested loops on
Fact_Table⋊ Dim_student

2: Select Tuples
3: Print Result

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 38

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

Execution Plan 2: Experiment 2
SQL Server, Amsterdam Oracle, Amsterdam

Input: Clustered Index Seek on
(Dim_Paper).(PK_Dim_Key), Clustered Index Scan
on Dim_Date, Clustered Index Seek on
Dim_Enrolment_Type, Fact_Table

Output: Query Result as Result
1: Run Nested Loops on Dim_Paper⟗ Dim_Date
2: if Tuples meets join condition then
3: Run Merge Join on Tuples⟗ Fact_Table
4: if Tuples meets join condition then
5: Run Merge Join on Tuples⟗

Dim_Enrolemnt_Type
6: if Tuples meets join condition then
7: Select Tuples
8: Print Result
9: else
10: Discard Tuples
11: end if
12: else
13: Discard Tuples
14: end if
15: else
16: Discard Tuples
17: end if

Input: Index Unique Scan on
(Dim_Paper).(PK_Dim_Key), Full Table Scan
Dim_Date, Table Scan on Dim_Enrolment_Type,
Fact_Table

Output: Query Result as Result
1: Run Buffer Sort on Dim_Date
2: Run Nested Loops on Dim_Enrolment_Type ⋊

Dim_Paper
3: if Tuples meets join condition then
4: Run Merge Join on Tuples × Dim_Date
5: if Tuples meets join condition then
6: Run Hash Join on Tuples⟗ Fact_Table
7: if Tuples meets hash condition then
8: Select Tuples
9: Print Result
10: else
11: Discard Tuples
12: end if
13: else
14: Discard Tuples
15: end if
16: else
17: Discard Tuples
18: end if

SQL Server, Auckland Oracle, Auckland

Input: Full Table Scan on Fact_Table
Output: Query Result as Result
1: Run Sort Operator on Fact_Table
2: Run Merge Join onFact_Table⟗ Tuples
3: Select Tuples
4: Print Result

Input: Full Table Scan on Fact_Table
Output: Query Result as Result
1: Run Hash Join onFact_Table⟗ Tuples
2: Select Tuples
3: Print Result

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 39

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

Execution Plan 3: Experiment 3
SQL Server, Amsterdam Oracle, Amsterdam

Input: Clustered Index Scan on
(Dim_Paper).(PK_Dim_Paper), Fact_Table

Output: Query Result as Result
1: Run Merge Join Dim_Paper⟗ Fact_Table
2: if Tuples meet join condition then
3: Run Sort on Tuples
4: Run Filter on Tuples
5: if Tuples meet having condition then
6: Select Tuples
7: Print Result
8: else
9: Discard Tuples
10: end if
11: else
12: Discard Tuples
13: end if

Input: Full Table Scan on Dim_Paper, Fact_Table
Output: Query Result as Result
1: Run Hash Match on Dim_Paper

ℎasℎFact_Table
2: if Tuples meet hash condition then
3: Run Hash Group By on Tuples
4: Create View
5: Run Hash Group By on Tuples
6: Filter Tuples
7: if Tuples meet having condition then
8: Run Sort on Tuples
9: Select Tuples
10: Print Result
11: else
12: Discard Tuples
13: end if
14: else
15: Discard Tuples
16: end if

SQL Server, Auckland Oracle, Auckland

Input: Full Table Scan on Fact_Table, Dim_Paper
Output: Query Result as Results
1: Run Merge Join onFact_Table⟗ Dim_Paper
2: Run Hash Match(ℑ) on Tuples
3: Run Hash Match(ℑ) on Tuples
4: Run Sort Operator on Tuples
5: Run Sort Operator on Tuples
6: Run Stream Aggregate (ℑ) on Tuples
7: Filter Tuples
8: Select Tuples
9: Print Result

Input: Full Table Scan on Fact_Table, Dim_Paper
Output: Query Result as Results
1: Run Hash Match onFact_Tableℎasℎ Dim_Paper
2: Select Tuples
3: Print Result

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 40

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

Execution Plan 4: Experiment 4
SQL Server, Amsterdam Oracle, Amsterdam

Input: Clustered Index Scan on
(Dim_student).(PK_student_Key), Fact_Table

Output: Query Result as Result
1: Run Merge Join on Dim_Student⟗ Fact_Table
2: if Tuples meet join condition then
3: Select Tuples
4: Print Result
5: else
6: Discard Tuples
7: end if

Input: Index Unique Scan on
(Dim_Student).(PK_Student_Key), Fact_Table

Output: Query Result as Result
1: Run Nested Loops on Dim_student⟗ Fact_Table
2: if Tuples meet join condition then
3: Select Tuples
4: Print Result
5: else
6: Discard Tuples
7: end if

SQL Server, Auckland Oracle, Auckland

Input: Full Table Scan on Fact_Table, Dim_student
Output: Query Result as Result
1: Run Sort Operator on Fact_Table
2: Run Merge Join on Tuples⟗ Dim_student
3: Select Tuples
4: Print Result

Input: Full Table Scan on Fact_Table, Dim_student
Output: Query Result as Result
1: Run Nested loops onFact_Table⟗ Dim_student
2: Select Tuples
3: Print Result

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 41

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

Execution Plan 5: Experiment 5
SQL Server, Amsterdam Oracle, Amsterdam

Input: Clustered Index Scan on
(Dim_EnrolmentType).(PK_Dim_Enrolment),
Fact_Table

Output: Query Result as Result
1: Run Merge Join on Dim_Enrolment_Type ⋊

Fact_Table
2: if Tuples meets join condition then
3: Select Tuples
4: Print Result
5: else
6: Discard Tuples
7: end if

Input: Full Table Scan on Dim_Enrolment_Type,
Fact_Table

Output: Query Result as Result
1: Run Hash Match Outer on Dim_Enrolment_Type

ℎasℎ
Fact_Table

2: if hash condition met then
3: Select Tuples
4: Print Result
5: else
6: Discard Tuples
7: end if

SQL Server, Auckland Oracle, Auckland

Input: Full Table Scan on Fact_Table,
Dim_Enrolment_Type

Output: Query Result as Result
1: Run Sort Operator on Fact_Table
2: Run Merge Join onFact_Table ⋊

Dim_Enrolment_Type
3: Select Tuples
4: Print Result

Input: Full Table Scan on Fact_Table,
Dim_Enrolment_Type

Output: Query Result as Result
1: Run Hash Match Outer on
Fact_Table ℎasℎ
Dim_Enrolment_Type

2: Select Tuples
3: Print Results

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 42

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

Execution Plan 6: Experiment 6
SQL Server, Amsterdam Oracle, Amsterdam

Input: Clustered Index Scan on
(Dim_Student).(PK_Student_Key)

Output: Query Result as Result
1: Run Merge Join on

Dim_Student⟗ Fact_Table
2: if Tuples meets join condition then
3: Select Tuples
4: Print Result
5: else
6: Discard Tuples
7: end if

Input: Table Access Full on Dim_Student
Output: Query Result as Result
1: Run Join on

Dim_Student⟗ Fact_Table
2: if Tuples meets join condition then
3: Select Tuples
4: Print Result
5: else
6: Discard Tuples
7: end if

SQL Server, Auckland Oracle, Auckland

Input: Full Table Scan on Fact_Table, Dim_Student
Output: Query Result as Result
1: Run Sort Operator on Fact_Table
2: Run Merge Join on
Fact_Table⟗ Dim_Student

3: Select Tuples
4: Print Result

Input: Full Table Scan on Fact_Table,Fact_Tableas
e , Simple Table Scan on Fact_Table, Dim_Student

Output: Query Result as Result
1: Run Join onFact_Table⟗ e
2: Run Join on Tuples⟗ Fact_Table
3: Run Join on Tuples⟗ Dim_Student
4: Run Simple Table Scan on Fact_Table
5: Run Simple Table Scan on e
6: Run Simple Table Scan on Dim_Student
7: Select Tuples
8: Print Result

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 43

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

Execution Plan 7: Experiment 7
SQL Server, Amsterdam Oracle, Amsterdam

Input: Clustered Index Scan on
(Dim_Programme).(PK_Programme_Key),
Clustered Index Scan on
(Dim_Intake).(PK_Dim_Intake), Fact_Table

Output: Query Result as Result
1: Run Table Spool(LazySpool) on Dim_Intake
2: Run Nested Loops on

Dim_Intake⟗ Dim_Programme
3: if Tuples meets join condition then
4: Run Merge Join on

Tuples⟗ Fact_Table
5: if Tuples meets join condition then
6: Select Tuples
7: Print Result
8: else
9: Discard Tuples
10: end if
11: else
12: Discard Tuples
13: end if

Input: Table Access Full on Dim_Programme, Table
Access Full on Dim_Intake, Fact_Table

Output: Query Result as Result
1: Run Hash Match on

Dim_Intake⟗ Fact_Table
2: if Tuples meet hash condition then
3: Run Hash match on

Tuples⟗ Dim_Programme
4: if Tuples meet hash condition then
5: Select Tuples
6: Print Result
7: else
8: Discard Tuples
9: end if
10: else
11: Discard Tuples
12: end if

SQL Server, Auckland Oracle, Auckland

Input: Full Table Scan on Fact_Table,
Dim_Programme, Dim_Intake

Output: Query Result as Result
1: Run Sort Operator on Fact_Table
2: Run Merge Join on
Fact_Table⟗ (Dim_Programme⟗
Dim_Intake)

3: Select Tuples
4: Print Result

Input: Full Table Scan on Fact_Table,Fact_Tableas
e, Dim_Intake

Output: Query Result as Result
1: Run Join on
Fact_Table⟗ e

2: Run Join on
Tuples⟗ Fact_Table

3: Run Join on
Tuples⟗ Dim_Intake

4: Select Tuples
5: Print Result

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 44

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

Execution Plan 8: Experiment 8
SQL Server, Amsterdam Oracle Second Approach, local

Input: Clustered Index Scan on
(Dim_Student).(PK_Student_Key), Fact_Table

Output: Query Result as Result
1: Run Merge Join on

Dim_Student⟗ Fact_Table
2: if Tuples meets join condition then
3: Sort Tuples
4: Select Tuples
5: Print Result
6: else
7: Discard Tuples
8: end if

Input: Index Fast Full Scan on
(Dim_Student).(PK_Student_Key), Fact_Table

Output: Query Result as Result
1: Run Join on

Dim_Student⟗ Fact_Table
2: if Tuples meets join condition then
3: Create View
4: Select Tuples
5: Print Result
6: else
7: Discard Tuples
8: end if

SQL Server, Auckland Oracle, Auckland

Input: Full Table Scan on Fact_Table
Output: Query Result as Result
1: Run Sort Operator on Fact_Table
2: Run Merge Join on

Fact_Table⟗ Dim_Student
3: Select Tuples
4: Print Result

Input: Full Table Scan on Fact_Table, Dim_Student
Output: Query Result as Result
1: Run Join on

Fact_Table⟗ Fact_Table
2: Run Join on

Tuples⟗ Dim_Student
3: Simple Table Scan on Fact_Table
4: Simple Table Scan on Dim_Student
5: Select Tuples
6: Print Result

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 45

DISTRIBUTED RELATIONAL DATABASE PERFORMANCE

Execution Plan 9: Experiment 9
SQL Server Second Approach, local Oracle, Amsterdam

Input: Clustered Index Scan on
(Dim_Paper).(PK_Paper_Key), Constant Scan on
Fact_Table

Output: Query Result as Result
1: Run Nested Loops on
Fact_Table⟗ Dim_Paper

2: if Tuples meets join condition then
3: Update Tuples
4: Print Results
5: else
6: Discard Tuples
7: end if

Input: Dim_Paper, Table Full Access on Fact_Table
Output: Query Result as Result
1: Run Nested Loops

on Dim_Paper⟗ Fact_Table
2: if Tuples meets join condition then
3: Update Tuples
4: Print result
5: else
6: Discard Tuples
7: end if

SQL Server, Auckland Oracle, Auckland

Input: Table Scan on Fact_Table, Dim_Paper
Output: Query Result as Result
1: Run Nested Loops onFact_Table⟗ Dim_Paper
2: Table Update on Tuples
3: Update Tuples
4: Print Result

Input: Full Table Access on Fact_Table, Dim_Paper
Output: Query Result as Result
1: Run Nested Loops on
Fact_Table⟗ Dim_Paper

2: Update Tuples
3: Print Result

Journal of Information Technology Management, Volume XXIX, Number 1, 2018 46

