
THE UNIT TEST: FACING CICD – ARE THEY ELUSIVE DEFINITIONS?

Journal of Information Technology Management Volume XXIX, Number 2, 2018

40

Journal of Information Technology Management

ISSN #1042-1319

A Publication of the Association of Management

THE UNIT TEST: FACING CICD – ARE THEY ELUSIVE

DEFINITIONS?

HADAS CHASIDIM

SCE — SHAMOON COLLEGE OF ENGINEERING
hadasch@ac.sce.ac.il

DANI ALMOG

SCE — SHAMOON COLLEGE OF ENGINEERING
almog.dani@gmail.com

DOV BENYOMIN SOHACHESKI

SCE — SHAMOON COLLEGE OF ENGINEERING
b@kloud.email

MARK L. GILLENSON

UNIVERSITY OF MEMPHIS
mgillnsn@memphis.edu

ROBIN POSTON

UNIVERSITY OF MEMPHIS
rposton@memphis.edu

SHLOMO MARK

SCE — SHAMOON COLLEGE OF ENGINEERING
marks@sce.ac.il

ABSTRACT

The widely used term “unit test,” which is a quality procedure for testing modules of software code, has been used

for decades. To enable unit testing, specialized infrastructures were designed to enable the isolation of unit tested code from

its production implementation. Currently, hundreds of tools and add-ons exist for unit testing in almost every software

development environment and language. Integration testing, on the other hand, which is a quality procedure for testing

multiple modules of software code working together, demands a vastly different kind of infrastructure to enable the

interaction of the code with other production implementation components. With the growing popularity of agile methods, the

boundaries of unit and integration testing have become blurred with Continuous Integration (CI) and Continuous Deployment

(CD) derived from market demand for continuous reply and reaction of the software to a rapidly changing world. CICD

enhances the importance of unit testing. Following that, it is important to identify the effect of new agile software

development life cycles (SDLC) on unit test activities – assuming it may affect software quality in general. In this paper, we

analyze the evolving different definitions and usages of the term “unit test” and attempt to understand the implication of these

definitions to the actual use of the term.

Keywords: unit test, component test, unit under test

mailto:hadasch@ac.sce.ac.il
mailto:almog.dani@gmail.com
mailto:b@kloud.email
mailto:mgillnsn@memphis.edu
mailto:rposton@memphis.edu
mailto:marks@sce.ac.il

THE UNIT TEST: FACING CICD – ARE THEY ELUSIVE DEFINITIONS?

Journal of Information Technology Management Volume XXIX, Number 2, 2018

41

INTRODUCTION

Motivation

Continuous Integration (CI) and Continuous

Deployment (CD) [10] are new trends driven by market

demand. This trend is affecting the ability to provide an

earlier and conscientious delivery of adaptation and

changes to the software product. These new working

paradigms signify a different approach towards software

development life cycles (SDLC) and the need to

understand the impact of this change on software quality

and testing procedures. The effect of the change may be

very significant at all dimensions of the organization and

software development processes, with an examination of

its effect on unit testing being the first step. It is essential

to ensure a common language among SDLC team

members using the term "unit test" consistently. To model

the CICD practices of different software industries [16],

the authors consider unit testing to be the basic procedure

within the CICD approach. Following a review of the

literature on CICD, research on CICD reports the

consistent and meaningful use of unit test during the

CICD process. Building on this work, this research

explores the different definitions and usage of the term

"unit test" during the last ten years as reflected in the

academic literature.

The goal of this research study is to arrive at a

better understanding of the term “unit test” and its

applications. We explore the primary usages of the term

to see whether there are differences of opinion among

leading academic researchers. To our knowledge, this is

one of the first papers that aims to better understand the

influence of current changes in software development

approaches and philosophies on testing efforts. This is

thus an initial step in trying to arrive at a clearer

understanding of the intention behind the value of unit

testing.

First, we report the outcome of literature review

research done on academic papers. The next section

contains our definitions and suggestions to refine the

definition and use unit testing in today’s more agile

SDLC processes. The last section concludes our findings

and gives recommendations for our future research.

Unit Testing in General

Today, almost every programming language has

its individual unit testing framework (e.g., JUnit for Java,

NUnit for C#), which enables the use of small,

automatically executable unit tests. Unit testing has

become an accepted practice, often mandated by

development processes (e.g., test-driven development).

On the other hand, many people use the term “unit test”

with different connotations and meanings referring to the

test of a specific component or functionality.

It is necessary to differentiate between the “unit

under testing” and “unit test.” While unit testing is the

act of testing at the unit of software code, e.g., one

module, level, the term unit under test refers to the

various portions of software code that are being tested.

The first formal definitions of “unit testing” supported by

the ANSI/IEEE Std 1008-1987, IEEE Standard for

Software Unit Testing reveal some flexibility concerning

the meaning of the word “unit” in “unit testing,” see insert

below. This definition is not precise enough for today’s

various approaches to SDLC, especially within the agile

SDLC environments. For example, is a unit a single item

or a set of items? Moreover, the definition does not

provide us with a definite idea of the actual intention of

the unit definition.

A set of one or more computer program modules

together with associated control data (for example,

tables), usage procedures, and operating procedures that

satisfy the following conditions:

1. All modules are from a single computer

program.

2. At least one of the new or changed modules in

the set has not completed the unit test.

3. The set of modules together with its associated

data and procedures is the sole object of a

testing process.

Over the years, academics, open-source

participants, and the software industry have generated an

abundance of different definitions for unit tests [11].

While some definitions are products of necessity, others

reflect a given principle. The majority of definitions cite

principle buzzwords and concepts, attempting to remain

accurate and authentic concerning the absolute definition

of “unit.” Such as the case where unit tests cover only

functional requirements or when a unit is defined as

writing many tests for one unit without actually formally

defining a unit.

The adoption of the use of xUnit tools in practice

is a rather straightforward process, and the administration

of tests involving the use of these tools is also relatively

easy. The main drawback is the misconception that such

tests are categorized as unit tests. With the help of

familiar testing tools, unit testing has become a

chameleon that can almost imperceptibly camouflage

itself and transform itself into other types of testing. As

Andrew Hunter has aptly noted, “Unit tests have quickly

become the proverbial hammer that makes everything

look like a nail” [7].

When codebases were still relatively small, and

implementations were more transparent, the notion of a

THE UNIT TEST: FACING CICD – ARE THEY ELUSIVE DEFINITIONS?

Journal of Information Technology Management Volume XXIX, Number 2, 2018

42

unit was straightforward. Original software systems

delivered anywhere from a single service to a series of

services and behavior patterns. The behavior patterns

were modest, and they focused on a specific goal. The

original (still true to this the day) philosophy behind the

Unix operating system (OS) is DOTADIW: “Do One

Thing and Do It Well” [13]. The entire OS was a scaffold,

using “very narrow, very tightly specified interfaces” [7].

Unix and Interlisp quickly gained popularity due to their

separation of responsibilities through the use of pipes,

filters, and interfaces [7].

The unit can be complex in its capabilities, but it

is intended to be solely focused on a unique output. This

characteristic transforms the unit into a black box; when it

is provided with input, the unit will not deviate from its

established, predetermined goal.

Unit testing is the sort of testing that is usually

close to the heart of developers [18]. The primary reason

is that, by definition, unit testing tests distinct, well-

defined parts of the system in isolation from other parts.

Thus, they are comparatively easy to write and use. Many

build systems that have built-in support for unit tests,

which can be leveraged without undue difficulty. With

Maven [9], for example, there is a convention that

describes how to write tests such that the build system can

find them, execute them, and finally prepare a report of

the outcome. Writing tests boils down to writing test

methods, which are tagged with source code annotations

to mark the methods as being tests. If the test code starts

to require complicated setup and runtime dependencies,

we are no longer dealing with unit tests. Here, the

difference between unit testing and functional testing,

which requires integration testing, can be a source of

confusion. Often, the same underlying technologies and

libraries are reused between unit and functional testing.

This is a good thing, as reuse is good in general and lets

you benefit from your expertise in one area as you work

on another. Still, it can be confusing at times, and it pays

to raise your eyes now and then to see that you are doing

the right thing.

The testability of such units is optimal and easily

implemented. Units are exclusively responsible and are

independent of other units. Planning and designing

systems composed solely of such units would be ideal but

the possibility of the development of such systems

amounts to wishful thinking. Today’s systems are so large

and intricate that the dismantling of a functional group

into single units would be an exhausting process at best.

The majority of systems today consist of compound or

interdependent units. The interdependency of units

degenerates the testing scheme and its capabilities:

Instead of single regulatory outcomes from one unit, we

find ourselves imitating input from various units to

conclude about a given unit. Developers find themselves

uncovering the encapsulation of units and their

dependencies to perform unit tests, a task that is

tantamount to unit integration testing, a topic that is

beyond the purview of this paper.

Previous Surveys on Unit Tests

In 2006, a unit testing practices survey [14] was

performed based on focus group discussions in a software

process improvement network (SPIN) and a questionnaire

was employed to validate the results (shown in Table 1).

The purpose of the survey was to investigate what

practitioners refer to when they talk about unit testing.

Since this survey has been conducted, more than

11 years ago, it seems logical to reexamine the use of its

terminology and practices. Programming languages, as

well as design implementations, have changed due to

more complex software capabilities. A more recent survey

2014 [5] focused on the possible test automation benefits

derived from the unit test:

1. What motivates developers to write unit tests?

The driving force behind unit testing are the

developers’ conviction and management

requirements

2. What are the dominating activities in unit

testing? Writing new tests are perceived as less

dominant than writing, refactoring, and fixing

the code. Often, a failing test s treated with an

amendment of the test (rather than the code) or

a deletion of the test.

3. How do developers write unit tests? Developers

claim to write unit tests systematically and to

measure code coverage, but do not have a clear

priority as to what makes an individual test

good.

4. How do developers use automated unit test

generation? The main uses of automated test

generation are those that do not require any type

of specification.

5. How could unit testing be improved?

Developers do not seem to enjoy writing tests;

they want more tool support in order to identify

what to test and how to produce robust tests.

Our survey, on the other hand, is focused on the

definition of the term “unit test” and on the ability to

differentiate between the various units participating in

unit testing. Naturally, we have chosen to explore the

option of academic publication.

THE UNIT TEST: FACING CICD – ARE THEY ELUSIVE DEFINITIONS?

Journal of Information Technology Management Volume XXIX, Number 2, 2018

43

Table 1: Results of Unit Testing Practices Survey 2006 [14]

 Definition Strength Problem

What? Test of smallest unit or units
Unit identification Test of

surrounding modules

GUI test

Unit identification

Test scripts and harness

maintenance

Data structures

How?
Structure-based

Preferably automated

Test framework

Documentation

Framework tailoring

Test selection

Test metrics

Where? Solution domain Not found Not found

Who? By developer
Independent test competence

network

competency

independence

introduction strategy

When? Quick feedback Continuous regression test Stopping criteria

Why? Ensure functionality
External requirement (safety)

agile methods
Cost versus value

UNIT TEST DEFINITION SURVEY

Our survey intends to look for most of the

publications that have appeared in major journals and at

major academic conferences from 2002 and later (see

Appendix 1). We omitted repetitive papers and excluded

instructional books. Overall 112 papers were selected for

this survey, all of which are listed in Appendix 1.

The following two selection criteria were

employed:

 The term “unit test” appears in the paper’s

title and abstract.

 The term “unit test” is used more than ten

times in the paper, the assumption being that

anyone who uses a term that frequently must

have a specific definition in mind.

Survey Questions

To make sure our collection was representative,

most of the papers we chose were published in the last

eight years. The distribution of the reviewed papers is

shown in Figure 1. The data gathered from each paper

included answers to the following questions:

1. What categories and affiliations in unit test

definitions can we identify?

2. In addition to the formal definition within the

paper, what attributes of usage can be found in

the employment of the term?

3. Is there a connection between the main topic of

the paper and its usage of the term “unit test”?

A textual and formal semantic analysis of the

papers convinced us that we needed to spend more time

reviewing each paper to try to understand the intention of

the precise usage of terms. To answer these questions, we

had to understand and evaluate each of these papers.

THE UNIT TEST: FACING CICD – ARE THEY ELUSIVE DEFINITIONS?

Journal of Information Technology Management Volume XXIX, Number 2, 2018

44

Figure 1: Articles Referred to by Publication Year

Categories

In our analysis of the content of the definitions,

we identified the following categories of motives for

defining unit test:

 Atomic – The definition states that the unit

test case focuses on the smallest indivisible

(atomic) fraction of code in the codebase.

 Isolation – The definition states that the unit

test is being administered for code that has

been isolated from the rest of the program.

 Code-related – The definition relates the

unit to a specific code.

 External dependency – The definition states

that there is a need to externalize all

dependencies.

 Who is doing the test? – Who is performing

the unit test (e.g., programmer)?

 Environment – The definition includes the

characteristics of the required test

environment.

 Methodology – The definition focuses on

the methodology and technique used for the

unit test.

 Automation – There is a direct relationship

with test automation.

 Domain – A specific domain is included in

the definition.

 Contribution – The definition contains a

declaration of the value of the unit test.

A one-sample t-test was conducted to examine

the differences between the definitions. Results showed

that there were significant differences between all the

definitions except for domain, environment, external

dependency, and automation. See results in Table 2.

We concluded from our analysis that many of the

definitions might belong to more than one category.

Figure 2 presents the most common category affiliations

found in our survey.

THE UNIT TEST: FACING CICD – ARE THEY ELUSIVE DEFINITIONS?

Journal of Information Technology Management Volume XXIX, Number 2, 2018

45

Table 2: One Sample T-test report

Category (M, SD) t(79) p < 0.05

Code M=1.5, SD=6.68 2.019 Yes

Atomic M=1.3, SD=5.78 2.02 Yes

Isolation M=0.83, SD=3.7 2.0 Yes

Who is doing test M=0.53, SD=2.4 1.96 Yes

Contribution M=0.45, SD=2.2 1.96 Yes

Methodology M=0.45, SD=2.2 1.97 Yes

Environment M=0.23, SD=1.04 1.94 Yes

External dependency M=0.13, SD=0.64 1.75 Not significant

Automation M=0.13, SD=0.6 1.9 Not significant

Domain M=0.03, SD=1.6 1.43 Not significant

Figure 2: Categories of Definitions

THE UNIT TEST: FACING CICD – ARE THEY ELUSIVE DEFINITIONS?

Journal of Information Technology Management Volume XXIX, Number 2, 2018

46

At this stage, it was evident that there was no

agreed-upon definition. Thus, we first attempted to extract

affiliations and categories, relying on semantic

relationships (semantic net) [4]. Definitions such as

atomic, isolation, and code-related were classified as

“classic” definitions in which the usage of xUnit test code

tools was assumed. When the definition was more

general, we called it a “component” definition. Figure 3

describes the distribution of the definitions using three

categories.

Figure 3: Definitions of “Unit Test”

While most (i.e., 66%) of the definitions were

classical, we could not ignore the component definitions

(24%); the remaining 10% represented cases where we

could not extract a precise definition from the manner in

which the term was being used.

"Unit Test" Usage Attributes

As reflected in published academic papers (see

Appendix 1), emphasizing that the definition in itself is

insufficient for an explanation of the usage of the term,

Figure 4 maps how different publications use the term

“unit test” as they address their specific readerships.

The theme of a given paper is sometimes

correlated to the use of the term. We distinguished

between papers that centered on the use of a specific tool

and those that were concerned with general use or with

theory. Almost half (47%) of the papers reported about

new tool or solution in order to answer a need related to

the unit test as displayed in Figure 5.

Topic of the Paper and Usage Attributes

A logistic regression was applied to examine the

effect of the papers’ topic on the use of unit test (Cox &

Snell’s R2 < 0.1). We failed to notice significant relations

between the topic of the paper and the usage affiliation of

the term in this case (Figure 6).

THE UNIT TEST: FACING CICD – ARE THEY ELUSIVE DEFINITIONS?

Journal of Information Technology Management Volume XXIX, Number 2, 2018

47

Figure 4: Attributes of Usage of the Term “Unit Test”

Figure 5: Topic Affiliation of the Research

THE UNIT TEST: FACING CICD – ARE THEY ELUSIVE DEFINITIONS?

Journal of Information Technology Management Volume XXIX, Number 2, 2018

48

Figure 6: Topics of Papers and Affiliation of the Use of the Term “Unit Test”

Survey Summary Results

1. What categories and affiliations in the unit test

definition can we identify? There are basically

two diverse ways to define the term “unit test”:

 The classic way – About two-thirds of

the papers related to the unit test as the

smallest, isolated, atomic and code-

related test that is mainly performed by

the developers.

 The component way (24%) – The focus

is on a unit of functionality, not

necessarily on the perception of the unit

test as the smallest, indivisible portion

of the program; here the unit test is

administered mainly by testers.

The rest of the papers (10%) did not define the

term at all and require further examination in

order to reveal how they understand the

meaning of the term “unit test.”

2. In addition to a formal definition within the

paper, what attributes of usage could be found

in the use of the term? Emphasizing that the

definition is insufficient for an explanation of

the usage of the term, we distinguished between

papers that centered on the use of a specific tool

and those that were concerned with general

usage or with theory. We failed to relate a

precise definition to specific usage

terminologies.

3. Is there a connection between the main topic (or

theme) of the paper and its use of the term “unit

test”? Almost half (47%) of the papers were

published reports of a new tool or a solution

provided to facilitate a need related to the unit

test. There was no significant connection

between the topic of the paper and use of the

term in this case.

OUR SUGGESTED DEFINITIONS

This research illustrates that at the most general

level unit testing refers to the practice of testing specific

functions, modules, or areas – or units – of software code.

THE UNIT TEST: FACING CICD – ARE THEY ELUSIVE DEFINITIONS?

Journal of Information Technology Management Volume XXIX, Number 2, 2018

49

This testing enables us to verify that the isolated piece of

code functions as expected. In other words, for any

function and a given set of inputs, one can determine

whether the function is returning the proper values and

will smoothly handle failures during execution should

invalid input be provided. Developing software on a

module level basis allows for more straightforward unit

testing because the code under test has been isolated

and/or is independent of other procedures in the code

base. To enable well-defined unit testing, the code should

be built with tight cohesion and loose coupling, with a

more significant number of smaller, more focused

functions that provide a single operation for a unique set

of data rather than large functions performing several

different procedures.

Unit tests are short code fragments created by

programmers or occasionally by a white box (structural)

or grey box (functional and structural) [2] – that is, by

testers during the development process. The unit test is

most often considered a lower test level. Unit testing is,

roughly speaking, the testing of a small portion of the

code in isolation from the test code. This is considered the

first testing step during development and the most

granular aggregate of the testing scheme. By its very

nature, the unit test is attached to the code from which it

is created. At the beginning of software development

history, when attempting to test a particular functionality,

testers were faced with the challenge of needing to have

the program ready and operational before attempting to

execute the test; the compiler would not let the code be

executed before completing all the necessary declarations

and building all of the affiliated infrastructures. Only then

could testers perform the specific test. Apart from running

the program in a debug mode, when they needed to test

the precise functionality they had to develop an isolation

mechanism to ensure the testing of specific code

behavior. Unit tests are written as test classes with test

methods. In the past, to display a similar behavior one had

to develop a new code to mask the tested unit and had to

inject artificial information into the tested object so that

the program could be executed (this was sometimes called

a mock mechanism). In general, mocking refers to the use

of replacement classes that are easily configurable to react

to input and provide the output during testing rather than

the use of real classes. There are different related terms:

for example, a stub usually has a fixed default behavior,

whereas a mock-up typically must be set up as part of a

test in order to verify expected interactions. Usually, the

tested program and the actual final code were very

different – because of the need to add instrumented

observational code to the application code. It was only

when the world moved into interpreter mode program

execution that isolation was enabled more naturally, and

unit test infrastructure appeared.

An important aspect of unit testing is the

environment where the class within the unit under test is

being operated [1]. Figure 7 demonstrates the internal

environment needed for the execution of the test. Unit test

infrastructure was designed as a pivotal element to enable

isolation of the tested code before the full implementation

of each object.

Figure 7: The Environment of a Test Class

THE UNIT TEST: FACING CICD – ARE THEY ELUSIVE DEFINITIONS?

Journal of Information Technology Management Volume XXIX, Number 2, 2018

50

In the modern development environment, a unit

test method is a method without input parameters. It

represents a test case and typically executes a method

where the class has fixed arguments (use of assert class)

and verifies that it is returning the expected answer [17].

Unit tests include a test oracle that verifies the observed

behavior with the expected result. By convention, the test

oracle of a unit test is encoded using assertions. The test

fails if any assertion fails or if an exception occurs [17].

An assert class failure will usually stop all execution, and

no exceptional treatment mechanism will be able to

salvage the program execution during integration testing.

Such a mechanism prevents us from refining the testing

process, and all failures are equally critical to the testing

process. The isolation and the predefined static value of

the tested parameters lead by their very nature to the

negation of any kind of integration between the different

elements of the software under test.

Differentiation of the Unit Test from an

Integration Test

For clarification, this paper sees an essential

distinction between the unit test, which refers to the use of

xUnit testing [18], and component testing, which is more

general and means the testing of only a portion of the

program. Another distinction might derive from the

abstraction level, in which case the unit test will usually

be affiliated with the code itself, and the component test

may be expressed in functional or business terminology.

The unit test may form the basis for component

testing that can be considered a higher level of testing.

Component testing is sometimes known as module and

program testing. Component testing is mostly done by the

tester. Component testing may be done in isolation from

the rest of the system depending on the development life

cycle model chosen for that application. In such cases, the

missing software is replaced by stubs and drivers that

simulate the interface between the software components

in a simple manner.

Figure 8: Architectural Buildup of a Testing Level

The greatest pitfall might be encountered when

developers test too large a unit or when they consider a

method to be a unit. This is particularly true if you do not

understand Inversion of Control, in which case your unit

tests will always turn into end-to-end integration testing.

Unit testing should test individual behaviors – and most

methods have many behaviors [6]. In some NASA

projects, such as the agency’s “Flight Software Product

Line” [6], one could see the possibility of the creation of

unit tests without the use of traditional xUnit

infrastructure (and without the use of the assert class).

It is therefore vital to explicitly define the

terminology when talking about the unit test and unit test

integration. For example, Unit Test Virtualization [3] is a

THE UNIT TEST: FACING CICD – ARE THEY ELUSIVE DEFINITIONS?

Journal of Information Technology Management Volume XXIX, Number 2, 2018

51

new approach for reducing the execution time of long test

suites. VmVm (pronounced “vroom-vroom”) is an easy-

to-use device for the implementation of Unit Test

Virtualization wherever Java is used. It allows us to

perform a pre-initiation of the test environment and to

avoid the need for restarting the execution process

following each failure. The idea behind the approach is

obvious but fails to distinguish between the unit test and

unit test integration nor does it address issues raised by

the use of an assert class. This approach is perhaps more

suitable for component tests.

Another example is work with Open Worm, as

reported by Sarma et al. [15], where a unit test applies to

the smallest functional unit of code and has no external

dependencies. On the other hand, tests intended to verify

that different components are working together are

classified as integration tests. They assess whether

multiple components have been integrated correctly.

Some of the tests discussed below focus on another

distinction that the authors make, rather than

distinguishing between ordinary verification tests

(designed to verify that the code is working as intended)

and model validation tests (designed to validate a model

against experimental data).

Usually, the isolation issue is presented through

the use of mock object technology [8]. While mock

objects help us remove unnecessary dependencies in tests

and make the tests fast and reliable, the use of mocks

manually written in C++ is problematic:

 Someone must implement the mocks. The

job is usually tedious and error-prone, and it

is no wonder that researchers go great

distances to avoid it.

 The quality of these manually written mocks

is somewhat unpredictable. You might see

some polished mocks, but you will also see

some that have been hacked up in a hurry

and which have a large number of ad hoc

restrictions.

 The knowledge you gain from using one

mock cannot be applied to the next one.

Discussions and Considerations

In contrast, Java and Python programmers have

some excellent mock frameworks that automate the

creation of mocks. Tests that rely on external API

(application protocol interface), network connections,

user input, threading, and other external dependencies

must be mocked. A passing test must continue to be

administered as long as the codebase remains in the same

state. If the network connection suddenly becomes

disconnected, the code will subsequently fail. However, if

a mock is implemented in place of the actual network

connection, the tests will continue to pass. Thus, mocking

has shown itself to be a proven and effective technique

and is a widely adopted practice. Having the right tool

absolutely makes the difference.

Another important aspect worth considering is

the identity and research specialization of those who are

administering the different testing levels. We argue here

that another set of skills and knowledge should be

considered when you must choose the right person to plan

and perform these testing activities.

It is our experience that when developers focus

on the unit level, it becomes more difficult for them to

comprehend the state of their code in the larger scheme of

the code base. Consequently, their units cannot directly

interact with other sections of the overall codebase, as the

developed units are essentially too isolated.

On the other hand, the refactoring process of a

tested unit of code [12] can complicate our understanding

of a unit and a unit test. Let us assume, for example, that

we have successfully tested and implemented an isolated

portion of code with no external dependencies. Once all

the tests pass, the developers must refactor their code.

During the refactoring process, the previously identified

unit of code can be extracted to multiple methods or

classes. If the extracted classes are themselves considered

units, then we have fundamentally undermined our

original test. Even more complicated than method

extraction, code that is migrated to an abstract parent class

cripples our definition of a unit even further. Abstract

classes cannot be tested because their code cannot be

instantiated. Do we relate to the inheriting classes of the

abstract class in order to test their shared parent?

Under ideal code conditions for a unit (isolation,

atomic, etc.), we can address the aptitude of the

programmers or testers for adequately understanding a

given program’s requirements. A correctly written test

can be executed on an isolated section of code and can

pass, if, unfortunately, the developer did not accurately

understand the necessary requirements. As a result, all the

tests will pass although many of them did not actually

validate the intended functionality of the code.

Regarding the degradation of code, all matter is

subject to natural deterioration. The robustness of the

matter largely influences the pace at which the

deterioration occurs. Software, albeit abstract and

intangible, is equally vulnerable to the deterioration and

degeneration phenomena found in the physical world

around us. More research is imperative if we are to better

understand the underlying source and effects of software

degradation (code rot) and the significance of unit tests in

the creation of a more durable, more robust software

product.

THE UNIT TEST: FACING CICD – ARE THEY ELUSIVE DEFINITIONS?

Journal of Information Technology Management Volume XXIX, Number 2, 2018

52

CONCLUSIONS

It is apparent that the definition of the term “unit

test” is neither clear nor precise. Most of the literature we

have reviewed tend to consider the structural aspect of the

term – atomic, isolation, etc. – and relates the action to an

X-unit testing infrastructure. About 24% of the sources

define “unit test” more loosely and display a higher level

of abstraction that does not restrict the definition, and

which allows an integrative portion of the program to be

included in the unit being tested.

 Unit testing – This is the act of testing an

isolated, atomic, and code-related portion of

the software (a unit). It is evident that the

right candidates to perform this activity are

the developers themselves.

 Component testing – This is the testing of a

functional and more substantial portion of

the program (a component). We claim that

another set of skills and another kind of

knowledge are needed to perform this

portion of the work.

It is vital in our opinion to distinguish between

the two aspects and to allocate the best resources for each

assignment, or, alternatively, to train the developers and

provide them with new skills and knowledge so that they

can perform these two categories of testing.

As stated in the Introduction, the move to CICD

shows shifting the center of testing activities into unit

testing. Therefore, we can identify growing importance of

the role of the unit testing level, which emphasizes the

importance of the distinction between classical unit

testing level and the integration (component) level. We

recommend that the two aspects of testing be separated in

the early stages of software development.

Threat to Validity

One of the possible threats to the validity of a

survey’s findings is related to the appropriateness of the

data collection and sampling approaches. To attain

optimal objectivity in our study, it was important to

collect a representative, statistically sound sample (our

full list of papers is included in Appendix 1). Another

possible threat may stem from the fact that we had to

subjectively interpret each definition and each use of the

terms in question. To prevent discrepancies, we had two

independent teams repeat the paper reviewing process.

The Next Step

To fully understand the impact to the quality of a

software product, it is important to follow this research

with a field study of the actual implementations of unit

test as part of the software quality assurance during a

CI/CD project. Since unit testing is considered an

important link in a chain of quality activities aimed to

improve organization outcome, understanding that will

assist organizations in focusing their quality goals and

recruitment needs.

Additionally, we can identify other future

research directions:

 Checking whether the current tools enable

the two activities – We propose a

continuation of research on the existing

testing tool with the aim of determining

whether there are tools that enable both unit

test definitions noted above.

 The present research study did not explore

the conditions under which unit testing is

enabled. It may be interesting to identify the

terms of feasibility for the proper use of unit

tests, or, in other words, to determine when

unit testing cannot be performed.

 Another possible direction is to try to bridge

the two definitions of unit testing by

proposing a metamorphosis of unit test

artifacts into component testing.

 The recognition of the open-source

community as a mainstream constituent in

global software development has produced

new research motivations. GitHub, Stack

Overflow, and Twitter, to mention but a few

social profiles, are the main vehicles for

individuals today to promote and publish

their opinions, styles, and code. Testing and

quality constitute core values in most open-

source projects. The comparison and

contrast of the definitions, perceptions, and

implementations of quality in open-source

community projects versus the competitive

software industry could provide us with an

even more profound understanding of

testing and, more specifically, unit testing.

REFERENCES

[1] Arcuri, A., G. Fraser, and J.P. Galeotti. Automated

unit test generation for classes with environment

dependencies. in Proceedings of the 29th

ACM/IEEE international conference on Automated

software engineering. 2014. ACM.

[2] Beizer, B. and J. Wiley, Black Box Testing:

Techniques for Functional Testing of Software and

Systems. Software, IEEE, 1996. 13(5): p. 98.

[3] Bell, J. and G. Kaiser. VMVM: unit test

virtualization for Java. in Companion Proceedings

THE UNIT TEST: FACING CICD – ARE THEY ELUSIVE DEFINITIONS?

Journal of Information Technology Management Volume XXIX, Number 2, 2018

53

of the 36th International Conference on Software

Engineering. 2014. ACM.

[4] Clark, P., et al. Exploiting a thesaurus-based

semantic net for knowledge-based search. in

AAAI/IAAI. 2000.

[5] Daka, E. and G. Fraser. A survey on unit testing

practices and problems. in 2014 IEEE 25th

International Symposium on Software Reliability

Engineering. 2014. IEEE.

[6] Ganesan, D., et al., An analysis of unit tests of a

flight software product line. Science of Computer

Programming, 2013. 78(12): p. 2360-2380.

[7] Hunter, A., Are unit test overused in Simple talk

2012: https://www.simple-talk.com/dotnet/net-

framework/are-unit-tests-overused/

[8] Lewis, W.E., Software testing and continuous

quality improvement. 2016: CRC press.

[9] Marschall, Philippe. "Detecting the methods under

test in java." Bachelor thesis (2005).

[10] Michael, H. 2016. Understanding and improving

continuous integration. In Proceedings of the 2016

24th ACM SIGSOFT International Symposium on

Foundations of Software Engineering (FSE 2016).

ACM, New York, NY, USA, 1066-1067. DOI:

https://doi.org/10.1145/2950290.2983952

[11] Naik, K. and P. Tripathy, Software testing and

quality assurance: theory and practice. 2011: John

Wiley & Sons.

[12] Passier, H., L. Bijlsma, and C. Bockisch.

Maintaining Unit Tests During Refactoring. in

Proceedings of the 13th International Conference

on Principles and Practices of Programming on the

Java Platform: Virtual Machines, Languages, and

Tools. 2016. ACM.
[13] Raymond, E.S., The art of Unix programming.

2003: Addison-Wesley Professional.

[14] Runeson, P., A survey of unit testing practices.

IEEE software, 2006. 23(4): p. 22-29.

[15] Sarma, G.P., et al., Unit testing, model validation,

and biological simulation. arXiv preprint

arXiv:1508.04635, 2015.

[16] Ståhl, D., and Bosch, J. "Modeling continuous

integration practice differences in industry software

development." Journal of Systems and Software 87

(2014): 48-59.

[17] Tillmann, N. and W. Schulte. Parameterized unit

tests. in ACM SIGSOFT Software Engineering

Notes. 2005. ACM.

[18] Verona, Joakim, Michael Duffy, and Paul

Swartout. Learning DevOps: Continuously Deliver

Better Software. Packt Publishing Ltd, 2016. page

88

AUTHOR BIOGRAPHIES

Hadas Chasidim is a faculty member at

Shamoon College of Engineering's Department of

Software Engineering. She holds B.Sc., M.Sc. and Ph.D

degrees in Industrial Engineering from Ben-Gurion

University (2013). Her research deals with software

quality and testing, human-computer interaction, usable

privacy and security. Hadas is the head of software

quality development track at Software Engineering

department in Beer Sheva campus.

Dani Almog is a senior researcher and lecturer

on Software Quality and test automation. Contributing

researcher and lecturer at Shamoon College of

Engineering (SCE) and Ben Gurion University (BGU).

Currently, the main topic of his studies are Software

quality testing and fundamentals, addressing software

engineering needs. Dani has very vast experience in the

industry – former test automation managing director for

Amdocs product development division. Dani is serving at

the Advisory Board of ITCB (Israeli Testing Certification

Board) and Leading the ISTQB academia research group

stream.

Dov Benyomin Sohacheski is currently a

graduate student and holds a B.Sc. in Software

Engineering from SCE Shamoon College of Engineering.

He is a researcher and an assistant lecturer at SCE. Dov

has over 8 years of experience in the software

development industry as a PHP and Python developer,

working on projects from web-based software services to

data-analytics and statistical platforms.

Mark L. Gillenson is Professor of Business

Information and Technology in the Fogelman College of

Business and Economics of the University of Memphis,

USA. He received his B.S. degree in Mathematics from

Rensselaer Polytechnic Institute and his M.S. and Ph.D.

degrees in Computer and Information Science from The

Ohio State University. He is an associate editor of the

Journal of Database Management and has published in

such leading journals as MIS Quarterly, European Journal

of Information Systems, and Information & Management.

His latest book is Fundamentals of Database Management

Systems 2nd edition, 2012, John Wiley & Sons.

Dr. Robin Poston is the Director of the System

Testing Excellence Program for the FedEx Institute of

Technology at The University of Memphis, and she is a

Professor and Dept Chair of Business Information and

Technology at the Fogelman College of Business &

Economics at The University of Memphis. She is holds the

http://www.simple-talk.com/dotnet/net-framework/are-unit-tests-overused/
http://www.simple-talk.com/dotnet/net-framework/are-unit-tests-overused/

THE UNIT TEST: FACING CICD – ARE THEY ELUSIVE DEFINITIONS?

Journal of Information Technology Management Volume XXIX, Number 2, 2018

54

Papasan Family Professorship for Exemplary Leadership,

serves as the Interim Associate Dean of the Graduate School.

Dr. Poston is a recipient of the Memphis Alumni Association

Distinguished Teaching Award and she leads the annual

International Research Workshop on Advances and

Innovations in Software Testing attended by over a hundred

academic and industry professionals.

Prof. Shlomo Mark currently the dean of the

faculty of engineering at SCE College of Engineering -

Ashdod campus is a professor of software engineering, and

the Head of the NMCRC – the Negev Monte Carlo Research

Center at SCE. His main research interests are Quality in

software engineering, Agility and Agile life cycle, scientific

computing and software Life Cycle for Scientific software

product, Computational Modeling for Physical,

Environmental and Medical Application.

