
MONITORING FOR TESTING THROUGHOUT THE DEVELOPMENT LIFECYCLE 

  

 

 

Journal of Information Technology Management Volume XXV, Number 3, 2014 

 

31 

 

Journal of Information Technology Management 

ISSN #1042-1319 

A Publication of the Association of Management 

MONITORING FOR TESTING THROUGHOUT THE 

DEVELOPMENT LIFECYCLE 

 

ROBIN POSTON 

UNIVERSITY OF MEMPHIS 
rposton@memphis.edu 

JIGNYA PATEL 

UNIVERSITY OF MEMPHIS 
jmpatel@memphis.edu 

JASBIR DHALIWAL 

UNIVERSITY OF MEMPHIS 
jdhaliwl@memphis.edu 

ABSTRACT 

Given software release deadlines, the early stages of a structured software development life cycle (SDLC) project 

can run behind schedule, shrinking the time allowed for performing adequate testing.  This situation urges the need to start 

testing early and manage the testing effort efficiently.  Our research examines how to assess the ways activities in the earlier 

stages of a project are progressing relative to their effect on the efficiency and effectiveness of the latter SDLC stage of test-

ing.  We build on the design for testability perspective by introducing the manage for testability perspective, where software 

testability reflects whether the activities of the SDLC process are progressing in ways that support the testing team with the 

appropriate software project information and testable designs to enable finding software product problems if they exist during 

the testing stage.  To address this challenge, we develop a software testing assessment to manage project testability during the 

earlier stages of the SDLC and we propose using the assessment as part of a testability measurement system.  The software 

testing assessment is designed to provide testing managers information they need: (1) to influence pre-testing activities in 

ways that ultimately increase testing efficiency and effectiveness, and (2) to plan testing resources that facilitate an efficient 

and effective testing stage. We developed specific software testing assessment measures through several rounds of interviews 

with key informants (i.e., testing managers at a global transportation company).  To support the assessment’s usefulness and 

application, we present data collected for the measures for large-scale structured software development projects and post-data 

collection debriefing sessions with senior testing leaders. 

 

Keywords: testability, software project, design for testability, manage for testability, qualitative 

 

 

mailto:rposton@memphis.edu
mailto:jmpatel@memphis.edu


MONITORING FOR TESTING THROUGHOUT THE DEVELOPMENT LIFECYCLE 

  

 

 

Journal of Information Technology Management Volume XXV, Number 3, 2014 

 

32 

INTRODUCTION 

Waterfall development remains the most com-

monly used methods in large organizations [12], where 

inadequate quality can result from insufficient testing ac-

tivities which are often relegated and compressed into the 

last stages of the life cycle limiting the time available for 

finding and fixing problems [11]. With pre-set release 

deadlines, the early stages of planning, analysis, design, 

and development within a structured software develop-

ment life cycle (SDLC) can run behind schedule, shrink-

ing the time allowed for performing adequate testing [9], 

[19]. One solution would be to better plan the testing pro-

cess to be more efficient, while another would be to im-

prove how activities in the earlier stages of the SDLC 

affect downstream testing activities, e.g., by ensuring less-

ambiguous requirements are documented during the anal-

ysis stage. This article examines how to assess how activi-

ties in the earlier stages of a project are progressing rela-

tive to their effect on the latter SDLC stage of testing to 

inform testing management how to take remedial actions.    

Many activities within the early stages of the 

SDLC influence the amount and type of software testing 

performed at the end of the SDLC [1], [7]. While progres-

sive software development teams include members of the 

testing team in document walkthroughs and inspections 

early in the SDLC [17], most testing teams lack a software 

testing assessment to evaluate how the activities of the 

early stages are progressing relative to their influence on 

tasks performed during testing. Armed with such an as-

sessment, testing managers could use assessment data to 

attempt to facilitate positive changes in the initial stages of 

the SDLC, as well as gain early warning of the amount 

and type of testing resources needed prior to the beginning 

of the testing stage.   

Software testing assessment frameworks (Testing 

Maturity Model, Test Process Improvement, The Testabil-

ity Fishbone [5]) currently exist that inform software de-

velopment teams on ways to design software code to be 

more testable and the means of estimating the testing ef-

fort.  These frameworks offer a design for testability 

(DFT) perspective, where software testability reflects 

whether code has been designed in such a way that the 

testing team will be able to find software problems if they 

exist [3], [6], [16].  From a DFT perspective, testability is 

a cumulative measure of design attributes of a developing 

software product that reflect the team’s ability to assess 

the amount of testing effort that will be needed to profi-

ciently test the product. The less testable a software prod-

uct, the more testing effort will be needed to ensure its 

quality prior to its release. Proposed DFT measures have 

focused on improving test cases [2], class diagram interac-

tions [4], input and output states of the code, and state 

transitions of the program [10]. These measures support 

utilizing design and code methodologies to help ensure 

more testable software products enter the testing stage. 

The DFT research addresses ways to improve a product’s 

testability at the software design phase, with little atten-

tion given to ways to improve a product’s testability 

through better managing the activities performed through-

out all the phases of the SDLC process.   

This article compliments the DFT perspective by 

examining how to assess SDLC process activities relative 

to their effect on the testing stage. We call this approach 

the manage for testability (MFT) perspective.  From a 

MFT perspective, testability reflects whether SDLC activ-

ities are progressing in ways that are informing and sup-

porting the testing team with the project information 

needed to improve the efficiency and effectiveness of 

finding software product problems if they exist during the 

testing stage.  Following MFT, we develop a software 

testing assessment, which focuses on the process and 

product characteristics of how the activities of the SDLC 

are progressing relative to their influence on tasks that will 

be performed during the testing stage, with the goal of 

improving testing capabilities.  Projects with low software 

testability assessments indicate greater testing effort will 

be needed as the activities of earlier stages of the SDLC 

are progressing in ways that make finding defects more 

challenging.  

In support of the MFT perspective, prior research 

has acknowledged the need for assessing testability at the 

SDLC process level [5], however details of assessment 

criteria have not been offered.  While the recognition for 

the need for MFT persists, little guidance exists as to how 

to develop a software testing assessment to help testing 

managers evaluate how activities performed earlier in the 

SDLC influence a software project’s testability and the 

testing effort that will ultimately be required during the 

testing stage. This article develops a project testability 

assessment for testing managers to utilize during the earli-

er stages of the SDLC before software testing begins and 

proposes using the assessment as part of a testability 

measurement system.  The software testing assessment is 

designed to provide managers information they need: (1) 

to influence pre-testing activities in ways that ultimately 

increase testing outcomes, and (2) to plan testing re-

sources that facilitate an efficient and effective testing 

phase. Thus, in this article, we move beyond the software 

product DFT research [4], [10], [15] to explore how to 

manage activities earlier in the SDLC process to improve 

testing activities. Based on the insights learned here, we 



MONITORING FOR TESTING THROUGHOUT THE DEVELOPMENT LIFECYCLE 

  

 

 

Journal of Information Technology Management Volume XXV, Number 3, 2014 

 

33 

propose best practices for testing managers to follow in 

order to increase the testability of their SDLC projects.   

To create the assessment, we developed specific 

software testing assessment measures for structured pro-

jects through several rounds of interviews with key in-

formants (i.e., testing managers at a global transportation 

company). Our aim was to discover and define measures 

of MFT.  We next validated the testability measures with 

member-checking and peer-debriefing and updated our 

assessment accordingly.  Finally we collected data for the 

measures for structured software development projects at 

the original global transportation company, as well as at 

other large companies, and then gathered post data-

collection debriefing feedback from senior testing leaders.   

CREATING SOFTWARE 

TESTABILITY MEASURES 

Producing high-quality software is not only a 

function of creating high-quality software product designs, 

but also managing high-quality software development 

processes. Binder [5] uses fishbone diagrams to illustrate 

the myriad facets of the testing process which influence 

testability, and emphasizes that “testability cannot be con-

sidered apart from the [SDLC] process” (p. 88).  Howev-

er, the paper fails to define measures of the activities of 

the SDLC process that influence testability.  Voas and 

Miller [18] focus on random black-box testing DFT and 

suggest repeated measures of testability are needed 

throughout the SDLC, however, they also do not define 

measures.  Our research was designed to develop these 

measures.   

Given these gaps, to create the software testabil-

ity measures, we followed three main steps: interviewing 

key informants to draft assessment measures; gathering 

feedback from additional key informants to determine the 

clarity, comprehensiveness, and accuracy of the measures; 

and collecting data from testing managers across multiple 

Fortune 500 level companies as a proof of concept. In the 

interview step, four testing leads and two testing auditing 

managers at a global transportation company were asked 

questions about the attributes of work performed across 

the SDLC that affected the ability of the testing team to 

find problems in the software and that influenced the work 

activities performed in the testing stage.  While the key 

informant sample represents a convenience sampling, 

people were selected based on the recommendation of 

senior testing leaders and were chosen on the basis of their 

considerable experience and expertise.  

To validate the assessment, we used triangulation 

accomplished through the use of multiple data sources and 

multiple researchers [14]. Iterative comparison and con-

trasting and cross-examination of our work across multi-

ple key informant interviewees allowed us to ensure that 

the outcomes of this assessment are well developed. The 

presence of multiple researchers allowed us to systemati-

cally recognize, discuss, and debate different interpreta-

tions and improve our understanding of defining the testa-

bility measures. To further improve the merit of the as-

sessment we also employed member-checking and peer-

debriefing [8]. We presented drafts of the assessment to 

the upper management team (senior managing directors 

and vice president) at the global transportation company 

(member-checking) as well as with researchers and practi-

tioners at a research workshop, a separate research collo-

quium, and international conference to gather additional 

input (peer-debriefing).  In addition, key informants from 

a global aviation company reviewed and provided input 

on each measure.  Together, these steps serve to support 

the assessment’s credibility, validity, and generalizability. 

In the data collection step, testing managers not 

involved in the steps above selected and assessed one of 

their development projects.  A total of 15 projects that 

were either in testing phase or release phase were assessed 

across five Fortune-500 level companies: five projects 

from the global transportation company, three from a 

global business-to-business supply chain company, three 

from a global retail company, two from a major utility 

company, one from a large non-profit healthcare compa-

ny, and one from a worldwide manufacturer of engineer-

ing solutions. The experience of the testing managers han-

dling the project ranged from 4 – 25 years. The testing 

manger’s experience ranged from 0-25 years and the 

number of man hours needed to complete the project 

ranged from 30-100,000.  The purpose of the data collec-

tion was to offer a proof of concept illustrating how the 

testability measures would be evaluated. The following 

sections describe the software testability assessment and 

its application in more detail.  

SOFTWARE TESTING 

ASSESSMENT 

The software testing assessment is provided in 

the Appendix.  As illustrated in the assessment, measures 

were developed for the following information technology 

components: software, hardware, documentation, security, 

data, and facilities.  These components were derived from 

the COBIT framework used by the IT professionals in the 

implementation, review, administration, and monitoring of 

an IT environment including the software development 

process [13]. Within these components each area was fur-



MONITORING FOR TESTING THROUGHOUT THE DEVELOPMENT LIFECYCLE 

  

 

 

Journal of Information Technology Management Volume XXV, Number 3, 2014 

 

34 

ther broken down into its subcomponents.  For example, 

under the heading of software, the subcomponents in-

clude: critical applications, where and how applications 

are executed, if patches are up-to-date, input and output 

controls, and error messages.  For each subcomponent, 

specific testability measures were developed.  For exam-

ple, for error messages, measures include: error messages 

provide clear description of the problem, error handling 

processes are efficient, and ability to perform fail-over 

and recovery testing.  When using the software assessment 

for software projects, testing managers rate each testabil-

ity measure for the project on a scale where 7 = highest in 

testability to 1 = lowest in testability.  For example, if 

error messages provide clear descriptions of the problem, 

the associated measure would be rated 7.  In this case, 

being rated at the highest testability level means this activ-

ity within the SDLC process provides insightful infor-

mation about software defects in error message coding 

improving the efficiency and effectiveness of the testing 

team to test for and find problems if they exist. 

As a proof of concept, to illustrate how the testa-

bility measures would be evaluated and their usefulness, 

we provide data collected for large-scale software devel-

opment projects. We asked each respondent to assess a 

project in the testing or release stage of the SDLC in order 

to encourage participants to consider how each measure 

influenced the ability to find problems if they existed.  

Limiting our data collection to projects in the final stages 

of development helped us validate the newly-created test-

ability measures.  Some specific testability measures were 

irrelevant to a specific project.  We remove the effects of 

the irrelevant measures to compare projects by calculating 

the percentage of the total possible score for each project.  

Table 1 summarizes these percentages for all projects 

assessed which range from 37% to 82%, and average 

64%.    The testability scores can be used by testing man-

agers to highlight issues in projects. For example, a pro-

ject scoring 37% testability score would imply that there 

are more SDLC issues to monitor and manage compared 

to a project scoring 82% as its testability score. 

 

Table 1: Summary of Project Software Testing Assessment 
 

Project Name 

Total 

Score 

Total 

Possible 

Testability Score (Total 

Score/ Total Possible) 

Ink and Toner Saver 183 224 82% 

Lab data management 228 287 79% 

ePrint 192 245 78% 

Management GUI 250.5 336 75% 

JRB Conversion 238 323 74% 

New service introduction 232 315 74% 

I Roads 266 371 72% 

International Returns 219 315 70% 

Pricing enhancements 200 315 63% 

Vendor Conversion 169 294 57% 

DSO Process Improvement 206 364 57% 

Global Tax Engine 197 357 55% 

ILS 155 315 49% 

Event Report 161 371 43% 

Plant Metric Dashboard 131 350 37% 

 



MONITORING FOR TESTING THROUGHOUT THE DEVELOPMENT LIFECYCLE 

  

 

 

Journal of Information Technology Management Volume XXV, Number 3, 2014 

 

35 

TESTABILITY MEASUREMENT 

SYSTEM 

Next we held post data-collection debriefing ses-

sions with additional software testers with project over-

sight responsibilities: two managing directors and a vice 

president at the global transportation company and a sen-

ior project manager and two senior testing managers at the 

major utility company.  The goal was to determine the 

uses and benefits of implementing the assessment to man-

age for testability. Table 2 summarizes the proposed uses 

and benefits.  The senior testing leaders interviewed 

agreed that the testability scores as evaluated by their test-

ing managers reflected their knowledge of the testing chal-

lenges encountered with each project.  The senior testing 

leaders confirmed the order of projects from highest to 

lowest testability scores did reflect the relative amount of 

challenges and testing effort that incurred within each of 

the projects evaluated for their respective companies.  

This feedback supports the usefulness of the testability 

assessment. 

 

Table 2: Proposed Uses and Benefits of Using the Software Testing Assessment 
 

Proposed Uses Proposed Benefits 

1. Library of project assessments Software testing assessment scores can be used for project baselines and comparisons 

to highlight issues  

2. Within project checkpoints Comparison of scores across the SDLC can highlight progress 

3. Communication mechanism Scores assessed by a variety of project stakeholders can be used to reconcile differing 

opinions, compare scores to reality, educate the project manager, and identify project 

issues 

4. Risk and resource indicator Scores can be used to discuss with upper management resource allocations and realis-

tic goal setting 

5. Troubled project indicator Scores can aid in determining which projects should be abandoned 

 

We propose the following testability measure-

ment system, illustrated in Figure 1.  The measurement 

system offers managers a way to assess how activities in 

the earlier stages of a project are progressing relative to 

their effect on the latter SDLC stage of testing.  Our as-

sessment illustrated in the Appendix provides measures of 

work performed throughout the SDLC including project 

documentation, tester’s product understanding, software 

product attributes, etc.  As an example of assessing and 

managing testability during the initial planning stage of an 

SDLC project, one of the testability measures evaluates 

the quality or number of problems with prior version of 

the product in cases involving major modifications.  If the 

quality of the original software is low, more problems 

existed in prior versions increasing the likelihood that the 

problems persist.  In this situation, testing teams will have 

greater difficulty finding defects that exist and will want to 

encourage SDLC stakeholders to be more diligent before 

testing begins or to be prepared for great testing expense 

given the additional effort that will be needed to test the 

product.  The dark black arrow illustrates that the infor-

mation gathered by a testing manager from the assessment 

throughout the SDLC can then be used to plan the amount 

of testing resources that will be needed to test to the prod-

uct. 

In the analysis state, one of the testability 

measures offers insights to the level of involvement that 

testing representatives have in document walkthroughs.  

Less involvement suggests the testing team has less input 

as well as less understanding of the project leading to 

greater challenges in finding problems and more testing 

needed during the testing stage.  In the design stage, one 

of the testability measures addresses how well data map-

ping between systems has been documented.  Poor docu-

mentation makes it more difficult to find software prob-

lems.  In the development stage, one of the testability 

measures assesses the ability to decouple code between 

interfacing systems.  Reduced ability to decouple code 

leads to more difficulty finding problems and more testing 

work required to define issues and determining solutions.  

In these situations, using a software testing assessment 

throughout the SDLC would provide useful information to 

testing managers needed to influence their SDLC counter-

parts to improve the software product or process activities 

throughout the SDLC, ultimately improving the efficiency 

and effectiveness of the testing stage.  The assessment 

would also offer testing managers early warning about the 

testing challenges and effort needed in planning testing 

resources prior to the beginning of the testing stage.  



MONITORING FOR TESTING THROUGHOUT THE DEVELOPMENT LIFECYCLE 

  

 

 

Journal of Information Technology Management Volume XXV, Number 3, 2014 

 

36 

 

 
 

Figure 1:  Testability Measurement System 
 

 

In a survey of software development profession-

als from other large organizations following structured 

development processes, we asked 24 project team leaders 

questions about how the assessment would benefit their 

projects, its stakeholders, and the organization. As shown 

in Table 3, the assessment would be most useful for stake-

holders to identify project issues (95.8%), for managers to 

assess project risks (91.7%), and for the quality assurance 

team to improve testing process (91.7%).   

 

Table 3: Testability Assessment’s Usefulness by Project, Stakeholder, or Organization-Related Uses 

 

Survey Items 
% of respondents agreeing with 

assessment’s usefulness (n = 24) 

Project-related 

Identifying project issues 95.80% 

Assessing risks in the project 91.70% 

Improving project  testing 91.70% 

Comparing projects 87.50% 

Managing project 87.50% 

Comparing a project across lifecycle stages 83.30% 

Determining if project should be abandoned 54.20% 

Stakeholder-related 

Highlighting stakeholders with accurate perceptions 83.30% 

Reconciling stakeholder opinions about the testability of the project 75.00% 

Organization-related 

Raising awareness to upper management of risks 87.50% 

Becoming part of the organization culture 83.30% 

Discussing with upper management about resources needed 79.20% 

Note: Each survey item was evaluated using a 7 point Likert scale with 1 signifying “Strongly Disagree” 

and 7 signifying “Strongly Agree”. 

 



MONITORING FOR TESTING THROUGHOUT THE DEVELOPMENT LIFECYCLE 

  

 

 

Journal of Information Technology Management Volume XXV, Number 3, 2014 

 

37 

DISCUSSION AND CONCLUSION 

This study collects data from actual projects.  

Given our findings and discussions with the respondents, 

we recognize project or testing managers may not neces-

sarily be the one and only respondent needed to assess the 

testability of projects.  Project and testing managers bring 

a project and testing perspective, respectively, which may 

bias their viewpoints in evaluating projects across the test-

ability measures. Thus, multiple project stakeholders, such 

as developers and designers, should also assess project 

testability.  How and why assessments provided by vari-

ous project stakeholders converge or diverge in their opin-

ions of project testability could provide insightful evi-

dence regarding the challenges of MFT.  A project man-

ager could assess the level of bias by comparing assess-

ments to actual outcomes and by obtaining data from more 

members of the SDLC team.  This would also highlight 

which stakeholders provide more accurate insights about 

project testability.   

Another important implication of this study is the 

need to use the software testing assessment as a bench-

mark-type tool to determine what types of projects are 

more versus less testable.   A database of projects could 

be gathered and used to determine patterns of project fac-

tors that drive testability.  Factors could include project 

size, project manager style, whether offshoring was in-

volved or not, criticality of the software to the user base, 

etc. As benchmark data builds, best practices in software 

testability can be derived and baseline measures could 

assess if future projects exhibit signs of improvement.  

With a database, comparing measures across and within 

SDLC stages may also provide useful insights.  Through 

statistical analysis of the data, researchers could determine 

which measures are driving testability the most and which 

criteria are most critical to the testability of software pro-

jects. Utilizing such a repository of projects, de-

mographics and testability scores could be analyzed to 

assess what factors drive testability across types of pro-

jects, people, and organizations. 

As a contribution to practice, testing managers 

lack the means to systematically assess how the activities 

of the SDLC are progressing in their relationship to a 

software product’s testability, which ultimately impacts 

the ability to find software problems if they exist and the 

amount of testing effort required in the testing stage.  In 

order to provide managers with the ability to influence 

pre-testing activities in ways that reduce testing efforts, 

and to plan testing resources that facilitate an efficient and 

effective testing phase, we propose managers utilize the 

software testing assessment, as developed and illustrated 

through our research, throughout the SDLC.  Testing 

managers and other SDLC stakeholders should utilize the 

software testing assessment as an audit tool, benchmark 

baseline, or a checklist. By assessing software develop-

ment projects starting at the beginning of the SDLC, de-

velopment teams can learn to build testability into their 

projects along the way and testing managers can gain 

forewarning of testing issues prior to the beginning of the 

testing phase. 

  This also gives the top testing management 

team a communication mechanism to open discussions 

with SDLC stakeholders about areas of improvement. As 

the findings of Table 2 illustrate, issues that affect project 

testability are pervasive, as all projects scored below 85%, 

with 7 scoring at or below 70% signifying projects that 

have ‘significant challenges’ in testability.  Armed with 

the assessment data, the score can encourage discussions 

among SDLC stakeholders to find ways to improve the 

process, and ultimate improve testing performance. An 

efficient approach would be for practitioners to monitor 

which measures are most strongly associated with testabil-

ity issues and identify the ‘top 10’. Then the most im-

portant testability indicators could be adopted as part of 

standard development practices. 

In this study, the software testing assessment that 

was developed covers a variety of activities and facets of 

the SDLC. The assessment in the Appendix illustrates the 

documentation category has the highest number of 

measures. .  This finding suggests testing leads should 

monitor how documentation is being managed as the pro-

ject progresses through the SDLC.  Documentation com-

prises business requirements, system requirements, system 

architecture specifications, de-coupling and back-out 

plans, detailed test plan specification, and defect log files.  

This finding highlights the need for testing managers to 

pay special attention to the level of testability based on the 

level of involvement and understanding of the testing team 

in document walkthroughs; how well documentation is 

begin developed and maintained; and information tracea-

bility, version control, storage location, and open issue 

resolution. 

REFERENCES 

[1]     Adrion, W. R., Branstad, M. A., and Cherniavsky, J. 

C., “Validation, Verification, and Testing of Com-

puter Software,” ACM Computing Surveys (CSUR), 

Volume 4, Number 2, 1982, pp.159-192. 

[2]   Bache, R., and Mullerberg, M., “Measures of testa-

bility as a basis for quality assurance,” Software 

Engineering Journal, Volume 5, Number 2, 1990, 

pp. 86-92. 



MONITORING FOR TESTING THROUGHOUT THE DEVELOPMENT LIFECYCLE 

  

 

 

Journal of Information Technology Management Volume XXV, Number 3, 2014 

 

38 

[3]  Basili, V. R., Briand, L. C., and Melo W. L., “A 

Validation of Object-Oriented Design Metrics as 

Quality Indicators,” IEEE Transactions on Software 

Engineering, Volume 22, Number 10, 1996, pp. 

751-761. 

[4]  Baudry, B., Traon, Y., and Sunye, G., “Testability 

Analysis of a UML Class Diagram,” Proceedings of 

the IEEE Symposium on Software Metrics, 2002, 

pp. 54-63.  

[5] Binder, R., “Design for Testability in Object Ori-

ented Systems,” Communications of the ACM, Vol-

ume 37, Number 9, 1994. pp. 87-101. 

[6]  Chidamber, S.R., and Kemerer, C.F., “A Metrics 

Suite for Object Oriented Design,” IEEE Transac-

tions on Software Engineering, Volume 20, Num-

ber 6, 1994. pp. 476-493. 

[7]  Cohen, C., Birkin, S., Garfield,  M., and Webb, H., 

“Managing Conflict in Software Testing,” Commu-

nications of the ACM, Volume 47, Number 1, 2004, 

pp. 76-81.  

[8]  Corbin, J., and Strauss, A., “Basics of Qualitative 

Research”, Sage Publications, Newbury Park, Cali-

fornia, 2008, pp. 299-300. 

[9]  Everett, G., and McLeod, R., “Software Testing: 

Testing Across the entire Software Development 

Lifecycle,” John Wiley & Sons Inc., Hoboken, New 

Jersey, 2007. 

[10] Freedman, R., “Testability of Software Compo-

nents,” IEEE Transactions on Software Engineer-

ing, Volume 17, Number 6, 1991, pp. 553-564. 

[11]  Gelperin, D., and Hetzel, B., “The Growth of Soft-

ware Testing,” Communications of the ACM, Vol-

ume 31, Number 6, 1988, pp. 687-695.  

[12] Gillenson, M.L., Racer, M.J., Richardson, S.M., 

and Zhang, X., “Engaging Testers Early and 

Throughout the Software Development Process: Six 

Models and a Simulation Study,” Journal of Infor-

mation Technology Management, Volume 22, 

Number 1, 2011, pp. 2011-2027.   

[13]  Lindeberg, T., “The Ambiguous Identity of Audit-

ing,” Financial Accountability and Management, 

Volume 23, Number 3, 2003, pp. 4267-4424. 

[14]   Mason, J., “Qualitative Researching,” Sage Publica-

tions, London, London, 2002, pp 190-191. 

[15]  Mouchawrab, S., Briand, L., and Labiche, Y., “A 

Measurement Framework for Object-Oriented 

Software Testability,” Information and Software 

Technology, Volume 47, Number 15, 2005, pp. 

979-997.  

[16]  Offutt, J., “Quality Attributes of Web Software Ap-

plications,” IEEE Software, Volume 19, Number 2, 

2002, pp.25-32. 

[17]  Singh, Y., and Shivani, G., “Role of Testing in 

Phases of SDLC and Quality,” International Jour-

nal of Information Technology, Volume 2, Number 

2, 2009, pp. 343-346. 

[18]  Voas, J., and Miller, K., “Improving the Software 

Development Process using Testability Research,” 

Proceedings of Software Reliability Engineering, 

Research Triangle Park, North Carolina, October 7-

10, 1992, pp 114-121. 

[19]  Whittaker, J., “What is Software Testing? And Why 

is it so Hard?  IEEE Software, Volume 17, Number 

1, 2000, pp. 70-79.   

AUTHOR BIOGRAPHY 

Jasbir Dhaliwal is Professor of Information Sys-

tems and Associate Dean for Research and Academic 

Programs at the University of Memphis. As the Director, 

he also leads the Systems Testing Excellence Program at 

the FedEx Institute of Technology that seeks to advance 

the science of software testing to provide a stronger theo-

retical base for industry practice. He has a PhD. from the 

University of British Columbia 

 

Jignya Patel is currently working toward her 

PhD degree in the Department of Management Infor-

mation Systems at the University of Memphis. Her re-

search interests focus on both technical topics such as 

software testing and non-technical topics with managerial 

implications such as knowledge management and effective 

ways to integrate technology into the workplace.  

 

Robin Poston received a B.S. in Computer Sci-

ence from the University of Pennsylvania and a Ph.D. in 

Information Systems from Michigan State University.  

She is an Associate Professor at the University of Mem-

phis and Associate Director of the Systems Testing Excel-

lence Program. She has published articles in journals such 

as MIS Quarterly, Journal of Management Information 

Systems, Decision Sciences Journal, IEEE Transactions 

on Engineering Management, Communications of the 

ACM, IEEE Computer, and others, including international 

conference proceedings. 

 



MONITORING FOR TESTING THROUGHOUT THE DEVELOPMENT LIFECYCLE 

  

 

 

Journal of Information Technology Management Volume XXV, Number 3, 2014 

 

39 

APPENDIX: SOFTWARE TESTING ASSESSMENT 

Note: Each measure is assessed on a Testability Scale of 7 = highest to 1 = lowest 

 

Testability Categories  Testability Measures 

Critical applications 
Quality of original software before testing starts specifically, unit test results 

along with build and known issues are available  

  
Quality of original software before testing starts specifically, first cycle of inte-

gration (end-to-end) testing results are good 

Where and how applications are exe-

cuted  
Visibility to data mapping to input and output of interfacing systems 

  Ability to control business rule parameters (e.g., modify data retention periods) 

Are patches are up-to-date? 
All patches been applied within the test  

environment before the start of testing  

Input and output controls Data dependencies are documented 

  Changes that affect other systems are documented 

Error messages Error messages provide clear description of the problem 

  Error handling processes are efficient 

  Ability to perform fail-over and recovery testing 

System fileservers: fileserver integrity All fileservers are operational 

Business Requirements (BRS) 
Level of involvement of testing representative(s)  

in the document walkthrough 

  Understanding of BRS by testing team members  

  Comprehensive assumptions and constraints have been included 

  Detail business scenarios and examples have been included 

  High level specifications for de-coupling have been included 

  Stakeholder review and approvals exist 

  Version control in place and followed 

  Open issues are tracked and addressed 

System Requirements (SRS) Level of involvement of testing representative(s) in the document walkthrough 

  Understanding of SRS by testing team members  

  Comprehensive assumptions and constraints have been included 

  Detail scenarios and examples have been included 

  Traceability to BRS has been documented 

  Stakeholder review and approvals exist 

  Version control in place and followed 

  Open issues are tracked and addressed 

System Architecture  

Specification (SAS)  
Completed and provided with entire system flow 

  Visibility of all interface changes 

  Defined data mapping between systems 

De-coupling/ Back-out Plan  Document is complete and provided 

  Ability to decouple specific functions within a  



MONITORING FOR TESTING THROUGHOUT THE DEVELOPMENT LIFECYCLE 

  

 

 

Journal of Information Technology Management Volume XXV, Number 3, 2014 

 

40 

project 

  
Degree of ability to decouple the code between interfacing systems /domains 

(more data/switch driven less code driven) 

Detail Test Plan  

Specification (DTPS) 
Stakeholder review and approvals exist 

  Understanding of DTPS by testing team members  

  Version control in place and followed 

  
Known location of organized repository  

of project files 

  Mitigation and contingency plan known risks 

  Well defined test strategy 

  Well defined test cases 

  Well defined test data plan 

Log files:  Defect log files 
All defects and their remedies are logged in an  

easily accessible manner by the testing group 

Overall 
Defined process for tracking and resolving testing  

issues/concerns/queries 

Access controls Access rights to all impacted systems have been set up before the start of testing 

  Access rights have been completely defined before the start of testing 

Internal controls on key applications Ability to test software compliance (e.g., HIPPA, SOX, PCI) 

Data security policies: Is there any 

formal written data security policy? 
Test data is locked down and secure 

  Production data is efficiently cleansed of sensitive information 

Data files / database access Updates and database files are accurate and available 

Data encryption Ability to simulate sensitive data 

  Ability to simulate encrypted data 

  Level of complexity in decrypting encrypted data 

Test environment Separate testing environment from the remaining software development team 

 


