
 A CASE STUDY OF TESTING A WEB-BASED APPLICATION USING AN OPEN-SOURCE TESTING TOOL

Journal of Information Technology Management Volume XXVI, Number 1, 2015

19

Journal of Information Technology Management

ISSN #1042-1319

A Publication of the Association of Management

A CASE STUDY OF TESTING A WEB-BASED APPLICATION USING

AN OPEN-SOURCE TESTING TOOL

SON BUI

UNIVERSITY OF MEMPHIS
sbui@memphis.edu

MANISH SHRIVASTAVA

UNIVERSITY OF MEMPHIS
mshrivasva@memphis.edu

EUNTAE “TED” LEE

UNIVERSITY OF MEMPHIS
elee@memphis.edu

JASBIR DHALIWAL

UNIVERSITY OF MEMPHIS
jdhaliwal@memphis.edu

ABSTRACT

Software testing in general is a very difficult task and testing web-based applications can be even harder due to the

market pressure and short time response to a larger scale of users. We present a case study that demonstrates how to test a

complex web-based application system by using a low-cost open-source testing tool in order to conduct performance testing

and load testing. The open-source testing tool we chose greatly helped us evaluate the different performance levels of a

complex Transportation Management System (TMS) and identify two critical performance issues before the actual

deployment. This tool turned out to be very cost-effective and useful to identify the potential performance problems before

actual production or implementation.

Keywords: Software testing, Web-based application testing, Open-source testing software.

INTRODUCTION

Software testing is a very difficult task and

testing web-based applications can be even harder due to

the market pressure and short time response to a larger

scale of users. Indeed, recently Hieatt and Mee [4] argue

that web-based application testing is very time-

consuming, lacks of direct pay-off, and often is neglected

by software testers. Testing a web-based application is

often pushed back to the last phase of the development

when the pressure soars, and it typically requires

significant amount of resources to commit. This article

examines how to resolve the issue of resource

commitment for web-based application testing. The

important issue on hand is to decide how much time and

 A CASE STUDY OF TESTING A WEB-BASED APPLICATION USING AN OPEN-SOURCE TESTING TOOL

Journal of Information Technology Management Volume XXVI, Number 1, 2015

20

effort are needed to avoid common testing casualty. For

the companies those have limited budget on IT resources,

resource commitment is a critical question that every

testing team needs to answer before launching on any

project to test a web-based application.

Given the importance of testing web-based

applications with limited IT resources, it is necessary for

organizations to implement a feasible strategy to reduce

cost and respond to fast-paced market while meeting, or

even exceeding the requirements to produce a product

with high quality. To address this dilemma, we present a

case study from a multi-national firm that struggled to

maintain the quality of web-based application testing with

limited IT resources. The solutions will require rigorous

understanding of IT business procedures, and willingness

of the testing team to experiment innovative approaches

to discover “the sweet spot” to increase productivity of

the web-based application testing. The testing team needs

to explore the following issues: 1) how can a web-based

application team develop a new and efficient way to test

web-based application? 2) when should the new approach

be used? 3) and what kind of technologies will be needed

to implement this new approach? To address these issues,

we conduct a case study and will demonstrate that it can

be a viable strategy to use an open- source tool in order to

better manage and negotiate with stakeholders by still

testing a web-based application system and managing to

deliver it with the high quality, especially when there is a

constraint of tight or limited budget.

We start with the discussion of testing activities

for web-based applications and move on to the alternative

approach to testing a web-based application by using an

open-source testing tool, called Grinder. Based on the

testing objectives and historical data, we then develop

optimal testing strategies by using four different types of

testing scenarios. Next, we present the testing results and

interpretations/implications of the testing results. Finally,

we end our paper with the summary and conclusion.

TESTING ACTIVITIES FOR WEB-

BASED APPLICATIONS

There are a number of ways to test web-based

applications and each testing activity could provide

different results regarding the expectation of software

testers. Because numerous factors can affect the web-

based application and the running environment, the web-

based application testing needs to be considered from two

different perspectives: the functional requirement and the

non-functional requirement. Both of these testing

perspectives are complementary and crucial to web-based

application testing. The functional requirement testing can

be applied to the traditional testing procedures in software

testing. On the other hand, the non-functional requirement

testing is unique in testing a web-based application due to

its dynamic environment that the web application

interacts with. Thus, our study is to focus more on the

non-functional requirement testing. Table 1 summarizes

seven different testing activities that are commonly used

in non-functional requirement testing:

Table 1: Activities Involved in Non-Functional Requirement Testing

Testing Activity Description

Performance Testing This test is used to verify system performance such as response time, speed, scalability and

stability [2].

Load Testing This test is used to verify web application behavior under normal and peak load level. It also can

help to identify resource-utilization level and identify application’s break point [2].

Stress Testing This test is used to evaluate web application behavior when it is pushed beyond normal and peak

load conditions. Unlike performance testing and load testing, the goal stress testing is revealed

defects under heavy load conditions such as memory leaks and synchronization issues [2].

Compatibility Testing This test is used to uncover failures due to different web browsers or configurations [2].

Usability Testing This test is used to identify issues centered on user interfaces. This type of testing aim to

complete, correct and concise the web interfaces so that different users can easily interact with

web application [2].

Accessibility Testing This test is used to verify the accessibility to the content of web application [2].

Security Testing The test is used to verify the effectiveness of web application against attacks outside its

environment or unauthorized access resources of web application [2].

 A CASE STUDY OF TESTING A WEB-BASED APPLICATION USING AN OPEN-SOURCE TESTING TOOL

Journal of Information Technology Management Volume XXVI, Number 1, 2015

21

Among those seven types of testing,

performance testing and load testing are probably the two

most common for large web- based applications. Most

systems are tested for functionality (i.e. compatibility

testing, usability testing etc.), but not performance testing

[3]. Indeed, both performance testing and load testing

could identify potential problem areas causing poor

performance when a web application runs at the normal

load conditions. If the system does not perform well, it

could hurt the reputation and credibility of the application

and the project leader [3]. In this article, we present a case

study that demonstrates how to test complex web-based

application systems by using open-source testing software

to conduct performance testing and load testing.

USING AN OPEN SOURCE

TESTING SOFTWARE AS AN

ALTERNATIVE APPROACH

As an alternative approach, open source testing

software can be used to reduce the cost of web-based

application testing. Open source software is a free

software that is given to the users to use and modify, and

often depends on the heart of the open source software

community to develop. It is common nowadays that many

open source software, such as Apache, are widely used

and supported by several giant IT industry companies

such as IBM and Apple.

In order to demonstrate the benefits of using

open source web-based application for software testing,

we adopt Grinder to test web-based application to assess

the different performance levels of web-based application.

Grinder is an open-source Java load testing framework

that enables to run web testing by using multiple load

injector machines. Because Grinder is free, it can reduce

IT spending in terms of licensing cost compared to

proprietary software testing. Common proprietary testing

software like LoadRunner and NeoLoad typically

consume a big chunk of IT spending depending on the

number of users and supported features.

Other benefits of Grinder are customizability and

code reusability. Just like other open source software,

Grinder provides testers with more freedom to customize

software, and ability to reuse its code without being

bothered by license terms. Users can freely modify

Grinder to fit into their needs, and reuse its code as they

wish. Those features are totally different from those

features available in proprietary web-based application

testing software.

Along with software customization and code

reusability of open-source software, Grinder can be also

fast deployed in terms of ease of installment and

simplicity in running test cases, and provides load test

independency for testers. These two features are very

crucial in testing web-based applications. Typically, many

proprietary web testing software such as LoadRunner and

NeoLoad require extensive understanding of how to run

and install the software. The installation and script

running of the testing software also consume tremendous

computer resources due to the heavy supporting features.

On the other hand, Grinder is scripted by Jython, a Java

implementation of the Python programming language,

and is relatively small and easy to set up for web-based

application testing compared to other proprietary web

testing software. Secondly, instead of simply presenting

response times of a web-based application under the load

test, Grinder provides detailed information about running

test cases and flexible customization for testers to test. In

many cases, testers often delay load testing to other

groups such as QA teams, and tend to skip the scalability

testing for web-based application components. Grinder is

more suitable for testers who want to test the interior of

their web-based application and not just the response time

via the user interface. Table 2 below summarizes the main

features of Grinder in comparison to LoadRunner and

NeoLoad.

 A CASE STUDY OF TESTING A WEB-BASED APPLICATION USING AN OPEN-SOURCE TESTING TOOL

Journal of Information Technology Management Volume XXVI, Number 1, 2015

22

Table 2: Comparison of Grinder with Other Common Web-based application Testing Software

 Grinder [1] NeoLoad [6] LoadRunner [5]

Language Support Java JavaScript Multiples (C, JavaScript etc.)

Features Load Test Performance, Load, and

Stress Test

Performance and Load Test

Scalability Large number of

virtual users. Web

testing platform only.

Large testing scales

including mobile testing and

cloud testing. Can go up to

1 million virtual users

Large testing scales including

mobile testing and cloud

testing

Ease of Use Require programming

skills to customize

Easy by interacting with

Window-based UI

Easy by interacting with

Window-based UI

Customization Highly customizable

and very tester friendly

Hard to customize – user

friendly

Hard to customize – user

friendly

Hardware

Requirement

Very low - few MB 500 MB for installation, and

1GB of RAM to run

3.7 GB for installation

Documentation Only support from user

manual

Medium support from

NEOTYS

Both high support from HP

and LoadRunner community

Cost Free to use High based on number of

virtual users.

High based on number of

virtual users.

DEVELOPING OPTIMAL TESTING

STRATEGIES BASED ON TESTING

OBJECTIVES

Testing web-based application could be very

stressful due to market pressure and limited time to run

the test. Web-based application testers often feel

overwhelmed and are unable to complete their tasks if

there is no clear testing strategy developed before the

actual testing job starts. One of the effective testing

strategies we used is to develop optimal testing strategies

based on the confirmed objectives of the testing with our

stakeholders. The step of optimizing testing strategies

often requires both 1) good understanding of the web-

based application systems and testing requirements, and

2) IT planning strategy to accomplish the required tasks.

The first step to develop optimal testing

strategies is to understand the web-based application

system to be tested and the objectives of testing. In our

case, we use Grinder to evaluate the different

performance levels of a very complex Transportation

Management System (TMS) which is a multi-tier web

based application system consisting of application

systems, web servers, and database systems. The core

functionalities of TMS are to provide transportation

planning, transportation execution, tracking and tracing,

and freight payment to several customers in North

America using a Software-As-A-Service model. Because

of repetitive performance issues and concerns of

customers, the Information Technology (IT) management

has suggested an upgrade to the hardware and software of

the application to the latest version of TMS. Before an

actual upgrade is implemented, the IT team set up a

prototype testing environment to conduct system load

testing and performance testing on the new application

system. The objective of this testing is to build a

confidence between business customers and the IT

management to demonstrate that this new TMS will meet

or exceed the performance expectations of its customers

under a variety of load conditions. The CPU utilization of

the web-based application system is also captured to

provide a broader picture on how the increase in

processing load would impact the CPU usage and system

resources.

In order to effectively achieve the objectives of

the testing, historical data is used to create optimal testing

strategies. First, we identified the most common and

important functional steps that are expected to be

performed on the TMS application. We then categorized

these core functional steps into four testing strategies.

The first of these strategies was Type 1 testing which

included 17 test cases. The remaining three strategies

used 6 test cases in varying percentages of functional

steps to simulate the Load Planning Center user (Type 2)

the Visibility User (Type 3) and the combination of both

users (Type 4). The numbers of test cases used in all four

test strategies are based on the most common and general

functions that the TMS must strategically and tactically

provide for the logistic firm.

 A CASE STUDY OF TESTING A WEB-BASED APPLICATION USING AN OPEN-SOURCE TESTING TOOL

Journal of Information Technology Management Volume XXVI, Number 1, 2015

23

By using Grinder, we created virtual users and

virtual scripts to perform each test case scenario as if it

were done by users in a real system. Virtual users

performed certain tasks identified in the test cases listed

below.

Type 1: Simple Test

Each of 17 functional test cases performed one at

a time with three different user levels, 1 user, 50 users and

100 users, by doing the same steps simultaneously. These

three levels of different users for this testing are based on

past experiment and judgment of various factors including

typical user base of the system, need of testing and

investment that we wanted to make on this testing. Table

3 shows descriptions of 17 test cases.

Type 2: Load Planning Center User Test

For all of the tests, the system was loaded with

integration transactions to bring it closer to the real world.

This arrangement could allow TMS to process inbound

and outbound integrations from/to various systems.

In this scenario, we simulated a combination of

tests by keeping dominating load on the planning related

functional steps. We used only one user level of 50 users

in this testing in order to simulate users doing different

tasks in the proportion of percentage specified for each

test case Table 2. Similar to Type 1, the number of users

chosen based on various factors such as user bases, testing

needs, and the amount of investment we committed in the

test. The percentages of users for six test cases were based

on our historical data of the company and prediction of

top managers about the future growth of the company. For

example, our data analysis showed that approximately

25% of users perform shipment inquiry. Thus, we chose

30% to indicate future need of that function. In addition,

this testing focuses on organizational planning functions

too. We increased the load for any transactional

processing test cases related to planning (i.e. shipment

tender and shipment inquiry).

Type 3: Visibility Users Test

In this scenario, we simulated a combination of

tests by keeping dominating load on the visibility

functionality. As in Type 2, we also used only one user

level of 50 users in this testing in order to simulate users

doing different tasks in the proportion of percentage

specified for each test case in Table 3. The number of

users chosen based on internal judgments such as the need

of testing and user bases. Similarly, the percentages of

users for six test cases were based on our historical data

and top manager’s prediction. In this testing, we,

however, increased the amount of operational report

generation functions because this testing primarily

focused on creating report or searching data from the

system.

Table 3: Type 2 and Type 3 Test Case Scenarios

Test

Identifier

Test Case

Description

User Proportion

Type 2 Type 3

Test 5 Users performing a

manual shipment

creation

30% 30%

Test 7 Users performing a

shipment tender

15% 5%

Test 21 Users performing a

manual order base

creation

15% 50%

Test 35 Users performing a

shipment inquiry

30% 30%

Test 38 Users performing

shipment document

creation

6% 5%

Test 39 Users performing

operational report

generation

4% 50%

 Type 4: Mixed Environment

This last testing scenario had five complete runs

of 50, 100, 200, 300, and 400 users. These test cases

included simulating both Visibility Users and Load

Planning Center Users. The purpose of this testing was to

observe the performance for each major category. This is

a test with mixed scenarios that include loads from both

previous two tests, Type 2 and Type 3, so that we can

simulate closer to daily transactions load for the systems.

We used the same proportion of users as it was used in

Type 2 and Type 3 on simultaneous basis.

TESTING RESULTS AND

INTERPRETATIONS

Type 1: Simple Test

The average testing time indicates the average of

time to run each test after running the test multiple times.

In general, the average mean testing time significantly

increased when we tested with 1 user comparing when we

test with 50 users and 100 users. In contrast, the average

testing time moderately increased when we tested with 50

users comparing when we tested 100 users. The three test

cases, Test 1.2, Test 1.3, and Test 1.14, are the only test

 A CASE STUDY OF TESTING A WEB-BASED APPLICATION USING AN OPEN-SOURCE TESTING TOOL

Journal of Information Technology Management Volume XXVI, Number 1, 2015

24

cases the server processed faster with 100 users than with

50 users. Some of the test cases experienced (e.g., Tender

Shipment, Create New System Entities –Rate Offering)

more average testing time than the others. This indicates

that some cases require significantly more CPU usage

than the others.

Table 4: Type 1 Test Results

Test Identifier Test Case Description
Average Mean Testing Time

1 User 50 Users 100 Users

Test 1.1 Query Order Base < 100 Results 3.7010 5.6777 7.1706

Test 1.2 Query Shipment < 100 Results 4.9091 12.9227 12.7347

Test 1.3 Query Rate Record < 100 Results 5.3945 7.6137 6.7617

Test 1.4 Create New System Entities – Location 9.4099 23.7299 35.8709

Test 1.5 Create New System Entities – New Order 11.5150 24.2442 31.5813

Test 1.6 Create New System Entities – Rate Offering 13.6518 22.8334 27.7779

Test 1.7 Save Changes to Business Objects 8.6513 9.0229 29.1337

Test 1.8 Query Order Base Primary Key 3.6577 6.4866 8.2078

Test 1.9 Query Shipment Primary Key 3.7438 4.9836 6.7602

Test 1.10 Query Rate Record Primary Key 3.3539 5.0705 7.5828

Test 1.11 Query Order Base > 100 Results 4.4600 7.1028 9.8592

Test 1.12 Query Shipment > 100 Results 3.8524 9.2540 9.9795

Test 1.13 Query Rate Record > 100 Results 6.0070 9.4221 11.0885

Test 1.14 Run Pre-Defined Query - Orders 5.9556 9.6926 8.0769

Test 1.15 Run Pre-Defined Query - Shipments 3.7019 8.6563 9.4772

Test 1.16 Tender Shipment 10.8312 15.9296 24.6841

Test 1.17 Generate Shipping Documents – Booking

Confirmation

4.9433 9.3366 11.7802

Type 2 and Type 3: Load Planning Center

User Test and Visibility User Test

Figure 1 indicates that each of the servers was

lightly tasked with the exception of the Veritas Cluster

Server (VCS) cluster server 1 seeing all the activity and

VCS cluster server 2 basically idle.

Figure 1 also shows the Web Servers

experiencing the same load as in the previous Type 2 test

with the Application Servers experiencing a larger impact

(almost doubled). Again, the second database server

cluster is idle with the first VCS taking the entire load.

Figure 1: Type 2 and Type 3 Test Results

 A CASE STUDY OF TESTING A WEB-BASED APPLICATION USING AN OPEN-SOURCE TESTING TOOL

Journal of Information Technology Management Volume XXVI, Number 1, 2015

25

Type 4: Mixed Environment

This last scenario had five complete runs of 50,

100, 200, 300, and 400 users. These tests runs included

simulating both Visibility Users and Load Planning

Center Users. The data collected from these tests

revealed some configuration limitations regarding the

Connection Pool for the Web Servers.

CPU Usages for Application, Web, and

Database Servers
Each run is represented by a graph of the CPU

usage as shown in Figure 2. For the testing run with 50

users, the Application Servers experienced a modest

bump from the mixed environment with the Web Servers

being relatively quiet. The load balancing on the Web

Servers evens the load considerably.

Figure 2: Type 4a Test Result

For testing run with 100 users (as shown in

Figure 3), the Web Servers started to experience a modest

increase in the larger load but the Application Servers

were relatively unfazed by the increase in users. The

Database Server had increased above 50% usage on the

CPU with still no sign of impact on the second Database

Server.

Figure 3: Type 4b Test Result

0
5

10
15
20
25
30
35
40
45

C
P

U
 U

sa
ge

Type 4a: 50 Users
 - CPU Usage for Application, Web, and Database servers

AppServ1-CPU

AppServ2-CPU

WebServ1-CPU

WebServ2-CPU

DBServ1-CPU

DBServ2-CPU

0
5

10
15
20
25
30
35
40
45
50
55

C
P

U
 U

sa
ge

Type 4b: 100 Users
 - CPU Usage for Application, Web, and Database servers

AppServ1-CPU

AppServ2-CPU

WebServ1-CPU

WebServ2-CPU

DBServ1-CPU

DBServ2-CPU

 A CASE STUDY OF TESTING A WEB-BASED APPLICATION USING AN OPEN-SOURCE TESTING TOOL

Journal of Information Technology Management Volume XXVI, Number 1, 2015

26

For the testing run with 200 users (as shown in

Figure 4), there is an increase in activities on the

Application Servers and the Web Servers However, the

impact was still modest. The load balancing on the Web

Servers and Application Servers appeared to be working

very well.

For the testing run with 300 users (as shown in

Figure 5), the Web Servers experienced diminishing

impact. The Application Servers still seemed to be

running at about the same level as 200 users, but the Web

Servers were practically flat lined. We believe that this

problem resulted from a shortage of connections to the

Web Servers. It is also the first time we could observe

one Web Server to be distinguished from the other Web

Server.

Figure 4: Type 4c Test Result

Figure 5: Type 4d Test Result

0

5

10
15

20
25

30

35

40
45

50

55

60

C
P

U
 U

sa
ge

Type 4c: 200 Users
 - CPU Usage for Application, Web, and Database servers

AppServ1-CPU

AppServ2-CPU

WebServ1-CPU

WebServ2-CPU

DBServ1-CPU

DBServ2-CPU

0
5

10
15
20
25
30
35
40
45
50
55

C
P

U
 U

sa
ge

Type 4d: 300 Users
 - CPU Usage for Application, Web, and Database servers

AppServ1-CPU

AppServ2-CPU

WebServ1-CPU

WebServ2-CPU

DBServ1-CPU

DBServ2-CPU

 A CASE STUDY OF TESTING A WEB-BASED APPLICATION USING AN OPEN-SOURCE TESTING TOOL

Journal of Information Technology Management Volume XXVI, Number 1, 2015

27

For the testing run with 400 users (as shown in

Figure 6), the Database Server still experienced heavy

load with approximately 53% of CPU usage. The

Application Server 1 showed two signs of CPU usage

overload. For this time, the Application Server 1

experienced significant work load than the first time.

Similarly to the Application Server 1, the Application

Server 2 occurred CPU usage overload almost twice.

However, it seems that the CPU usage load at the first

time moderately decreased and then suddenly reached to

the climax of the CPU usage load at the second time.

Figure 6: Type 4e Test Results

Comparison of Test Processing Times for

Four Different User Levels
The test processing time indicates the average of

waiting time when we repeated the test multiple times.

The increase in the test processing time from 100 users to

200 users was relatively small. The load of 200 users

seemed to be the ideal for the out of the box settings.

On the other hand, the increase in the processing

time from 200 users to 300 users suggested a greater

delay in the time the Web Server was responding to the

user. This is most likely due to a limited number of

connections to the Web Server as will be evidenced in

Figure 5 for the CPU usages of Web Server for different

user levels in the next subsection.

Regarding the increase in the processing time

from 300 users to 400 users in Figure 4, Test 35 had a

shorter wait time for 400 users than for 300 users. It

seems that the task of “Tendering Shipments” requires

more on the part of the Application Server than on the

Web Server; once a connection is established there isn’t a

great deal of interaction required at the Web Interface

level.

0

5

10

15

20

25

30

35

40

45

50

55

C
P

U
 U

sa
ge

Type 4e: 400 Users
 - CPU Usage for Application, Web, and Database servers

AppServ1-CPU

AppServ2-CPU

WebServ1-CPU

WebServ2-CPU

DBServ1-CPU

DBServ2-CPU

Figure 3. Type 4 Test Results

 A CASE STUDY OF TESTING A WEB-BASED APPLICATION USING AN OPEN-SOURCE TESTING TOOL

Journal of Information Technology Management Volume XXVI, Number 1, 2015

28

Figure 7: Comparison of Test Processing Time

Closer look at the CPU usages of Web and

Application Servers
Figure 8 shows the activity for the Web Servers

was practically non-existent especially for 50, 300, and

400 user levels while the Application Servers was active,

but not overstressed. It makes sense to have a low CPU

usage activity of Web Server for 50 users, but this

represents a bottle-neck issue in the process. In addition,

the CPU usage for Web Server has an interesting pattern.

It would seem that the activity on the Web Server 1

significantly dropped off after 200 users. The 300 and 400

user levels for the Web Server appear to be at the same

level as the user level of 50. As mentioned earlier, this

would be most likely due to a limited number of

connections to the Web Server.

On the other hand, CPU usages of the

Application Server for five different user levels do not

present any problematic patterns or issues. Yet, the 400

user level seems attenuated, that is, the requests didn’t

seem to hit the server as quickly as with the user levels of

100 or 200.

Figure 8: Web Server and Application Server Usage Comparison

0

50

100

150

200

250

300

350

400

450

Test 5 Test 7 Test 21 Test 35 Test 38

Comparison of Test Processing Times for Four Different
User Levels; 100, 200, 300, and 400 Users in Type 4

Testing

100 Users

200 Users

300 Users

400 Users

 A CASE STUDY OF TESTING A WEB-BASED APPLICATION USING AN OPEN-SOURCE TESTING TOOL

Journal of Information Technology Management Volume XXVI, Number 1, 2015

29

IMPLICATIONS OF THE TESTING

RESULTS

We closely monitored 1) CPU utilization of Web

Servers, Application Servers and Database Servers, and 2)

the test processing time of various test scenarios with

different virtual user levels for most common processes

such as shipment tender, manual shipment creation,

manual order base creation, shipment inquiry, shipment

document creation, and operational report generation.

During the process of executing the four testing

strategies, we observed two critical performance issues.

The first issue has to do with the Web Server connections

to the Application Servers. When the loading on the Web

Server was increased to 300 and 400 users, CPU

utilization went downwards instead of going upward (as

demonstrated in the Figure 5). This pattern helped us

diagnose the connection issue between the Web Servers

and Application Servers. On the other hand, the

Application Servers seems fully capable in handling the

extra load. The second issue seems to be with the

Database Servers. The second Database Server didn’t

appear to be online as demonstrated in all the graphs for

the CPU usages in the previous section. In all of the five

CPU usage graphs, no activity of the second Database

Server was observed. With the shift away from the Web

Servers being a bottle-neck, the Database Servers might

in fact become the new constraint, although at the

heaviest loads the servers didn’t seem to extend far

beyond 50 percent.

SUMMARY AND CONCLUSION

We used a case study from a multi-national firm

to demonstrate how to successfully test a complex web-

based application in order to deliver the application with

the high quality web-based application even when only

limited IT resource is available to the testing team. The

results show that it can be a viable strategy to use an open

source web source application testing tool to better

manage and negotiate with stakeholders by still testing a

web-based application and managing to deliver it with the

high quality, especially when there is a constraint of tight

or limited budget.

The benefits of using open-source software

include low cost, software customization and code

reusability. The open source testing tool we used for this

study is Grinder, which facilitates fast deployment in

terms of ease of installment and simplicity in running test

cases, and provides load test independency for testers.

These two features seem to be very crucial to test web-

based applications. Typically, many commercial web

testing software such as LoadRunner and NeoLoad

require extensive understanding of how to run and install

the software, and are more expensive to deploy in a web-

based application testing environment. In this case study,

Grinder turns out to be very cost-effective and useful to

identify the potential performance problems before actual

production or implementation. Only the downside of

using this tool was to hire consulting service for initial

set-up and configuration as in any other open-source

software. This can be very minimal considering the

purchasing price of proprietary software testing tools.

We developed our optimal testing strategies

based on the confirmed objectives of the testing with our

stakeholders. Four testing strategies were developed by

using our historical data to identify core functions of

TMS: 1) a simple scenario with 17 typical tasks, 2) a test

scenario for Load Planning Center users with 50 virtual

users assigned to 6 different typical tasks, 3) a test

scenario for Visual Functionality users with assigned to 6

different typical tasks, and 4) a mixed scenario for both

Load Planning and Virtual functionality users with five

different user levels: 50, 100, 200, 300, and 400.

In order to interpret our results, we compared

multiple scenarios to find the limitations of web-based

applications. We found two important and critical

performance issues from the execution of these testing

strategies: 1) the bottle-necked activities in the Web

Server because of the connection issue between the Web

Server and Application Server; and 2) no activation of the

second Database Server. This case study greatly helped us

identify these two important and critical performance

issues before the actual implementation of the new TMS

system. We fixed the Web Server connection issue and

also improved application configuration. After these two

improvements, the new TMS system was prepared to be

hosted in real time. The prototype to the execution was

approved into application deployment plan by the

management.

This study helped the testing team to obtain

confidence from business customers and the IT

management. The study not only proved that the new

web-based application will work on our real environment,

but also provided a projection on actual CPU utilization

of various load circumstances on all tiers of the

application usage.

This study also demonstrates how the

performance and load testing can be conducted for a very

complex web-based application even with limited IT

resources by using an open-source testing tool. We hope

that our study can help those who want to evaluate web-

based application systems on a tight budget with short

window of time frame by using our four testing strategies.

 A CASE STUDY OF TESTING A WEB-BASED APPLICATION USING AN OPEN-SOURCE TESTING TOOL

Journal of Information Technology Management Volume XXVI, Number 1, 2015

30

REFERENCES

[1] Aston, P., "The Grinder, a Java Load Testing

Framework", http://grinder.sourceforge.net/,

August 2014.

[2] Di Lucca, G.A. and Fasolino, A.R., "Testing Web-

based Applications: The State of the Art and Future

Trends", Information and Software Technology,

Volume 48, Number 12, 2006, pp.1172-1186.

[3] Grossman, D., McCabe, M.C., Staton, C., Bailey,

B., Frieder, O. and Roberts, D.C., "Performance

Testing a Large Finance Application", IEEE

Software, Volume 13, Number 5, 1996, pp.50-54.

[4] Hieatt, E. and Mee, R., "Going Faster: Testing the

Web Application", IEEE Software, Volume 19,

Number 2, 2002, pp.60-65.

[5] HP, "LoadRunner",

http://www8.hp.com/us/en/software-

solutions/loadrunner-load-testing/, August 2014.

[6] Neotys, "NeoLoad Key Features",

http://www.neotys.com/product/neoload-

features.html, August 2014.

AUTHOR BIOGRAPHIES

Son Bui is a Ph.D. student of Management

Information Systems at the University of Memphis. He

holds undergrad and master degree in MIS from Brigham

Young University. His research interests include

economics of information systems, strategic alignment

and business analytics.

Manish Shrivastava is a Business Analyst at

Ingersoll Rand in Memphis TN. Manish is responsible for

business applications such as ERP, WMS and TMS for a

global distribution center. Manish has 14 years of work

experience in all phases of SDLC including Software

testing. Manish has worked with numerous fortune500

companies as an IT consultant in his previous consulting

assignments. Manish’s special interest includes Supply

Chain Systems and Technology, Enterprise Systems

Integrations, Project Management and software testing.

Manish holds an Executive MBA degree from University

of Memphis and Project Management certification

through Project Management Institute.

Euntae “Ted” Lee is currently an Associate

Professor in the Department of Management Information

Systems at the University of Memphis. He received his

Ph.D. in Management Information Systems from

University of Nebraska and MS in Computer Science

from The Pennsylvania State University. His primary

research interests are knowledge engineering and

management, business rule managements systems,

database systems, software development/testing, and

strategic use of organizational information systems. His

work has been published in various journals and

conference proceedings in IS and other related areas.

Jasbir Dhaliwal is Professor of Information

Systems and Interim Dean of the Graduate at the

University of Memphis. He is also a director of the

Systems Testing Excellence Program at the FedEx

Institute of Technology in the University of Memphis. He

has a Ph.D. from the University of British Columbia,

Canada and has published over fifty research papers in

journals such as Information Systems Research,

Information & Management, IEEE Transactions on

Engineering Management, International Journal of

Production Economics, European Journal of Information

Systems, and in numerous conference proceedings of IS

and related areas.

http://grinder.sourceforge.net/
http://www8.hp.com/us/en/software-solutions/loadrunner-load-testing/
http://www8.hp.com/us/en/software-solutions/loadrunner-load-testing/
http://www.neotys.com/product/neoload-features.html
http://www.neotys.com/product/neoload-features.html

