
ATCG: AN AUTOMATED TEST CASE GENERATOR

Journal of Information Technology Management Volume XXVII, Number 3, 2016

112

Journal of Information Technology Management

ISSN #1042-1319

A Publication of the Association of Management

ATCG: AN AUTOMATED TEST CASE GENERATOR

CHARLES P. MORGAN

FEDEX SERVICES CORPORATION
chuck.morgan@fedex.com

MARK L. GILLENSON

UNIVERSITY OF MEMPHIS
mark.gillenson@memphis.edu

XIHUI ZHANG

UNIVERSITY OF NORTH ALABAMA
xzhang6@una.edu

SON N. BUI

TEXAS A&M UNIVERSITY–COMMERCE
son.bui@tamuc.edu

EUNTAE “TED” LEE

UNIVERSITY OF MEMPHIS
elee@memphis.edu

ABSTRACT

Testing software to validate its functionality requires the development of carefully crafted test cases. Test cases can

be developed algorithmically, they can be taken from existing data, or they can be developed from requirements. In this paper,

we describe an Automated Test Case Generator (ATCG) that takes requirements statements as inputs and creates test cases as

outputs. The ATCG represents a better, systematic way to develop test cases automatically from requirements, and provides

multiple benefits and in the meantime, alleviates some potential issues with manually developing test cases from requirements.

Keywords: Software testing, test case, test case generator, requirements document.

INTRODUCTION

Every newly developed product of any kind has

to be tested to ensure that it correctly performs the func-

tions for which it was designed. This is true of an airplane,

an oil refinery, or a washing machine. It is also true of

software, whether it is systems software or application

software. Software can vary from simple applications to

very complex applications and systems, and it all must be

tested. The fact that in today’s business environment,

software applications have to function on or be accessed

from a panoply of devices ranging from smart phones to

mailto:chuck.morgan@fedex.com

ATCG: AN AUTOMATED TEST CASE GENERATOR

Journal of Information Technology Management Volume XXVII, Number 3, 2016

113

mainframes, each with a variety of operating systems and

versions, multiplies the testing problem considerably [6].

Testing software to validate its functionality re-

quires the development of carefully crafted test cases. A

test consists of executing a test case and comparing the

actual result to the expected result. Broadly speaking, test

cases can be developed in one of three major ways. They

can be developed algorithmically using techniques such as

pairwise analysis [6] [9], they can be taken (possibly with

modifications) from data from an existing application that

is being replaced or upgraded [6] [15], or they can be de-

veloped from requirements [5] [6] [8] [9] [13]. This paper

will focus on developing test cases from requirements.

Developing test cases from requirements has

several distinct advantages [5] [6] [8] [9] [13]:

 The assurance that the software that supports

every requirement is being tested.

 The involvement of the business personnel

who requested the application in the testing

process.

 Traceability of a defect, based on a test case

failure, to the requirement and thus to the

portion of the software that was written for

the requirement.

However, there are also some potential issues

with manually developing test cases from requirements [5]

[6] [8] [9] [13]:

 The process is labor-intensive and can be

unacceptably time consuming.

 If the person writing the test cases is not one

of the business people who developed the

requirements (e.g., a tester) then there is a

significant time element in reviewing and

understanding the requirements.

 The requirements may not have been broken

down into fine enough divisions for a com-

prehensive set of test cases to be developed.

 A test case developed from a requirement

may not correctly test it.

 Too much time may be required to review

requirements documents and ask for clarifi-

cations.

 Additional time may be required to enter test

cases in a test case management system.

 Sometimes there are missed test cases re-

quirements due to miscommunication in the

requirements or a missed requirement itself.

 Extra time is required to add missed test cas-

es to the test bed and re-test.

 Test cases that affect multiple systems some-

times are either missed or not tested.

 If necessary test cases are not included, it

can lead to defects not caught that may show

up in production.

This paper describes an Automated Test Case

Generator (ATCG) that takes requirements statements as

inputs and creates test cases as outputs. We start by pre-

senting a review of the related work with a focus on

scripted testing and model-based testing. We then de-

scribe the Automated Test Case Generator (ATCG), a

software tool that can read requirements documents and

automatically detect and generate test cases. And finally,

we summarize the paper, discuss the advantages of using

the ATCG, and outline future research.

RELATED WORK

Software testing is indispensable in ensuring

software quality [2]. It has been estimated that software

testing uses up to 50% of the overall development cost

[10] and the testing activities consume approximately

40% of the overall development time and effort [14]. To

improve the effectiveness and efficiency of testing, testers

need to create high-quality test cases. Writing test cases,

however, is an arduous task and often times involves hu-

man errors. Thus, it is crucial that we can find a way of

automatically generating high-quality test cases which can

be used in making testing activities more effective and

efficient to assure software quality.

Automatically generating test cases for testing

purposes is not a new idea. For instance, Weyuker et al.

[15] introduced an approach to automatically generate test

sets that would be highly effective at detecting faults. In

requirement-based testing, the need of automation is even

more serious. Requirement-based testing normally re-

quires multiple manual processes where software testers

have to design test cases from requirements, run the test

cases, and verify whether requirements of the soft-

ware/system under test are met. If the requirement-based

testing processes do not run correctly or consistently, the

size of the test cases may be too enormous to complete

testing in reasonable time or the test cases cannot provide

the expected results [1]. To minimize the effort and cost

on testing, many companies have started investing in the

automation of testing processes and tools. Automation has

proven to be an effective way to reduce cost and shorten

the product release time to market, and will be a major

factor for the success of software testing [13].

In general, this effort can be divided by two types

of automated test case generation techniques: white-box

(code based approach) and black-box (specification based

approach). While each of the two techniques has its own

advantages and disadvantages and both are used common-

ATCG: AN AUTOMATED TEST CASE GENERATOR

Journal of Information Technology Management Volume XXVII, Number 3, 2016

114

ly in automated test case generation, the emphasis in this

paper is on black-box test automated test case generation

[13].

There are several black-box test approaches to

automatically generating test cases in requirement-based

testing. These methods are semi-automated ones that re-

quire software/system specifications expressed in precise

notations. However, most of the software/system require-

ments currently used in the software industry are written

in natural language and thus normally require software

testers or systems analysts to translate them into precise

software/system specifications. The two most common

requirement-based testing methods that can semi-

automatically generate test cases, scripted testing and

model-based testing, are reviewed as follows.

Scripted Testing

Scripted testing follows a single path that is writ-

ten by software testers. The path normally follows multi-

ple steps and phrases that test cases are designed to fol-

low.

Scripted testing has three important characteris-

tics: repeatability, objectivity, and auditability. Repeata-

bility refers to the ability to execute the scripts multiple

times in an identical way. If product A passed the first test

but failed the second test, the scripted testing has to be

able to reproduce the testing process to test product A.

Objectivity refers to the ability to follow good test design

principles rather than well-skilled testers. For example,

scripts are used not only in early testing phases but also in

later testing activities to catch defects. Finally, auditability

refers to the ability to trace from requirements, to design,

to execution, and back again. This ability allows software

testers to go back to fix any defects that early testing ac-

tivities failed to identify [3].

Oftentimes, scripted testing is used in the water-

fall method. The “IEEE Standard for Software Test Doc-

umentation” [7], defines eight documents that can be used

in software testing, and these eight documents correspond

to eight steps that scripted testing needs to cover: test

plan, test design specification, test case specification, test

procedure specification, test item transmittal report, test

log, test incident report, and test summary report [3].

In the testing procedure described above, each of

the eight steps can be automated except for the first four

steps (i.e., test plan, test design specification, test case

specification, and test procedure specification) due to the

complexity of test design. These four steps are usually

based on the system requirements that the software testing

team is required to specify and document. Thus, scripted

testing still requires a lot of effort to translate system re-

quirements to test case specification and test procedure

specification in order to automatically execute the test

cases [3].

Model-Based Testing

Another popular black-box automated test case

generation method is model-based testing. Model-based

testing is the method that automatically generates test cas-

es from models derived from system requirements and

system behaviors [4]. Typically in order to generate test

cases, software testers need to develop models to repre-

sent how the intended systems could work from system

requirements documents. The goal of the model is to cap-

ture the functional requirements of the system in a clear,

concise and executable way that the language cannot ex-

press [5]. The requirements model can be used to evaluate

the completeness of the system when developing and test-

ing test cases. In order to develop a requirements model,

modeling languages such as Unified Modeling Language

(UML) and SysML are typically used to create interac-

tions and descriptions for system behaviors [8] [12].

For example, Nebut et al. [11] introduced a semi-

automated method of generating test cases by using the

UML method. This approach creates simulation models

from systems requirements to automatically generate test

cases and execute them.

While much of this method is automated, an im-

portant phase that converts the requirements language to

system models is manually done by the software testing

team. This process, however, is very time-consuming and

prone to error.

In summary, neither scripted testing nor model-

based testing has been effective or efficient in automati-

cally generating test cases for requirement-based testing.

Thus, in this paper, we introduce a new method that can

automatically translate the system requirements to test

cases in a more effective and efficient way. Our method

can read requirements documents from business and de-

velopment teams, and then automatically analyze them

and generate test cases accordingly.

AUTOMATED TEST CASE

GENERATOR (ATCG)

The Automated Test Case Generator (ATCG) is

a software tool that can read requirements documents

from the business and development teams, for the purpose

of automatically detecting and generating test cases. The

ATCG is run on the Windows desktop by software testing

personnel. After a requirements document is selected for

ATCG: AN AUTOMATED TEST CASE GENERATOR

Journal of Information Technology Management Volume XXVII, Number 3, 2016

115

analysis using the ATCG tool, a test case can be generated

as follows:

1. The ATCG electronically “reads” the document

as a human would do by parsing lines of text.

2. When a sentence appears to contain a require-

ment, it is decomposed and analyzed for con-

tent, word-by-word:

 An attempt is made to analyze the sen-

tence by subject-verb-predicate order.

 Action verbs and key words are looked

for in the sentence, using user configu-

rable word lists.

 If the sentence proves to contain a test

case, then the test case is created.

Once the test cases are created, they are stored in

a centralized database so that everyone can review them.

Test cases can be edited for revisions, printed, and im-

ported to a test case management system and emailed to

others. The architectural overview of the ATCG is shown

in Figure 1. A search feature allows the search for test

cases that are common across multiple systems.

Figure 1: Architectural Overview of the Automated Test Case Generator (ATCG)

The Detailed Steps to Automatically Create

Test Cases

There are 5 steps to automatically generate test

cases based on the requirements document. Each step will

be discussed with relevant examples.

Step 1
The ATCG loads into memory the lists of key

words and phrases that will help it to identify test cases.

The lists by the ATCG are shown in Table 1.

Table 1: The ATCG Lists and Purposes

List Purpose

Action Verbs Used for determining verbs that indicate some actionable phrase

Technology Terms Words that are commonly used technology terms in requirements

Nouns Commonly used nouns that may appear as test inputs

Adjectives Adjectives used to describe the types of test inputs

Prepositions Prepositions that may be used to indicate placement of test inputs

Test Data Values A list of test data values that can be static, random, or in a range

ATCG: AN AUTOMATED TEST CASE GENERATOR

Journal of Information Technology Management Volume XXVII, Number 3, 2016

116

Step 2
The ATCG parses the requirements document to

look for phrases that may contain requirements reference

numbers. This is accomplished by identifying numerical

values formatted in patterns that typically are used for

software requirements numbering. If a reference is found,

it will remember its requirements reference number and

apply it to subsequent test cases generated (this is an op-

tional step and if no reference is found, test cases can still

be generated). The examples of requirements reference

numbers are SR 5421503, SR 5421522, SR 5421527, and

SR 5421539 as shown in Table 2.

Table 2: Examples of Requirements Reference Numbers

Requirement ID Requirement Name Requirement Description

6.7.21.1

SR 5421503

Version: 6.0

Owner: John Doe

Project/Load: 2014.TEST.01

Testable: true

Work Request WR5912

Support Variable Length Postal

Codes

The system shall support alpha-numeric postal codes

of variable length not to exceed the database limit of 5

characters.

BR 6.1.1

6.7.21.2

SR 5421522

Version: 2.0

Owner: John Doe

Project/Load: 2014.TEST.01

Testable: true

Work Request WR5912

Support Alpha-Numeric Sector

Codes

The system shall support two character alpha-numeric

sectors on the user interface.

BR 6.1.2

6.7.21.3

SR 5421527

Version: 1.0

Owner: John Doe

Project/Load: 2014.TEST.01

Testable: true

Work Request WR5912

Modify Time Segment The system shall support minute-resolved time seg-

ments.

Current default: 15 min resolution

Proposed change: 1 minute resolution

BR 6.1.3

6.18.1.8

SR 5421539

Version: 3.0

Owner: John Doe

Project/Load: 2014.TEST.01

Testable: true

Work Request WR5912

Support Mass Updates The system shall provide a “mass update” capability to

manage a one route to many ‘relationship.

BR 6.1.4

Step 3
The ATCG parses the requirements document

looking for complete sentences. A complete sentence must

start with a capital letter and end with a period. Once a

sentence is identified, the ATCG looks for an action verb

in the sentence from a list of user-configurable verbs. It

then separates the sentence into three parts: subject, verb,

and predicate. The following is an example sentence

found in a requirements document: “The user interface

shall support 5 digit postal codes for US locations.”

Table 3: An Example Sentence in a Requirements Document

Subject Verb Predicate

The user interface shall support 5 digit postal codes for US locations.

ATCG: AN AUTOMATED TEST CASE GENERATOR

Journal of Information Technology Management Volume XXVII, Number 3, 2016

117

Step 4
Using the predicate found in the sentence, the

ATCG searches through the vocabulary lists to look for

phrases that could be expected test inputs. Once a test

input is found, it looks in the list of test data values to

obtain a value to use as the expected input.

If a sentence, “The user interface shall support 5

digit postal codes for US locations,” is found, then “5

digit postal codes for US locations” will be identified as a

predicate, and the two test input names will be found with-

in the predicate along with matched test data values in the

test data list as shown in Table 4 below:

Table 4: Test Input Names and Test Data Values

 Expected Test Input

Name

Test Data Value Found in

List

5 digit postal codes 38103

US locations Memphis, TN

Step 5
Finally, a test case is generated, including the fol-

lowing:

 A sequential test case number is generated.

 The requirements reference number identi-

fied in Step 2 is included.

 The test case description is derived from the

requirements sentence.

 Test case type is specified as positive, nega-

tive, boundary analysis, etc.

 The test inputs that were identified in the re-

quirements, along with test data values cho-

sen from the test data lists available.

 The expected results are created from the

sentence found in the requirements by mak-

ing it into a declarative sentence.

Table 5 shows an example of a generated test

case.

Table 5: An Example of a Generated Test Case

Test Case Number 03901

Reference Number Found SR39029

Test Case Type Positive

Test Case Description Test for support 5 digit postal codes for US locations

Expected Test Inputs

Test Input Name Test Data Value

5 digit postal code 38103

US Location Memphis, TN

Expected Results The user interface supports 5 digit postal codes for US locations

Correcting Expected Test Inputs

If a generated test case has expected test inputs,

but the ATCG cannot locate any equivalent test data to

use in the list of test data input, then the user will be noti-

fied that the test case is missing some test data. The user

will then be shown a list of expected test inputs that are

missing test data, and will be prompted to edit the test

data inputs list to provide test data for these expected test

inputs. For example, suppose that the ATCG cannot locate

test data for an expected test input “US locations” as fol-

lows.

Table 6 shows some examples of test input

names and test data values to use (partial):

Table 6: Test Input Name and Test Data Value

to Use

Test Input Name Test Data Value to Use

postal codes 38103

City Chicago

Employee ID 99999

Table 7 shows an example of “No Test Data

Found” for an expected test input in a test case:

Table 7: An Example of No Test Data Found for

an Expected Test Input

Expected Test Input Name Test Input Value Found

5 digit postal codes 38103

US locations No Test Data Found

ATCG: AN AUTOMATED TEST CASE GENERATOR

Journal of Information Technology Management Volume XXVII, Number 3, 2016

118

If needed, the ATCG can generate an email to

the requirements author to clarify the expected test input’s

purpose.

Available Functions in the Automated Test

Case Generator (ATCG)

To make the ATCG more use-friendly and easier

to use, the following features/functions are available as

tabs on the Windows interface: Documents, Require-

ments, Test Cases, Vocabularies, Tools, Preferences, Test

Data, and Help. The full descriptions of these fea-

tures/functions are provided in Table 8.

Table 8: The ATCG Tabs and Functionalities

Tab Functionality

Documents View the list of documents that have

been submitted for test case

generation, and search all documents

for test cases using key word search

capability

Requirements Create a requirements document

profile to be analyzed for test cases,

and begin the process of test case

generation

Test Cases View the test cases generated for the

currently opened requirements

document

Vocabularies View/edit the action verb and

terminology vocabularies used for

test case analysis

Tools Access online tools useful in the

testing process (requirements

management, etc.)

Preferences Set the test case generation

preferences to be applied when

generating test cases

Test Data View/edit the list of test data

parameters used for automatic test

data generation

Help Perform a sentence analysis test of the

test case generator to generate a test

case

SUMMARY AND CONCLUSION

Testing software to validate its functionality re-

quires the development of carefully crafted test cases. Test

cases can be developed algorithmically using techniques

such as pairwise analysis, they can be taken (possibly with

modifications) from data from an existing application that

is being replaced or upgraded, or they can be developed

from requirements. In this paper, we try to find a better,

systematic way to develop test cases automatically from

requirements in order to alleviate some potential issues

with manually developing test cases from requirements as

mentioned earlier in the Introduction section.

To improve the process of creating test cases, the

ATCG can read requirements documents from business

and development teams, for the purpose of automatically

detecting and generating test cases. After a requirements

document is selected for analysis using the ATCG, a test

case can be generated as follows:

1. The ATCG tool electronically “reads” the docu-

ment as a human would do by parsing lines of

text.

2. When a sentence appears to contain a require-

ment, it is decomposed and analyzed for con-

tent, word-by-word.

Once the test cases are created, they are stored in

a centralized database so that everyone can review. Test

cases can be edited for revisions, printed, and emailed to

others.

The Automated Test Case Generator (ATCG)

will be evaluated for use on a regular basis. It should be

noted that the accuracy of test case generation is heavily

dependent on the quality and standardization of the re-

quirements documents. When used correctly, the ATCG

can provide the following benefits:

 To improve the productivity of test case de-

sign

 To increase test coverage over manual test

case writing methods

 To improve end-to-end testing by identifying

test cases that affect multiple systems

 To save time in generating test data by hav-

ing the ATCG automatically choose test data

In addition, we believe that an agile version of

the automated test case generator could also be created

that reads user stories, and then generates test cases con-

tinuously, as the user stories change. In future research,

we plan to conduct an empirical study by collecting expe-

riential data to confirm whether the promised benefits are

actually realized and to what extent.

ATCG: AN AUTOMATED TEST CASE GENERATOR

Journal of Information Technology Management Volume XXVII, Number 3, 2016

119

REFERENCES

[1] Bender RBT Inc. “Requirements Based Testing

Process Overview,” http://benderrbt.com/Bender-

Require-

ments%20Based%20Testing%20Process%20Overv

iew.pdf, 2009, pp. 1-18.

[2] Cohen, C.F., Birkin, S.J., Garfield, M.J., and Webb,

H.W. “Management Conflict in Software Testing,”

Communications of the ACM, Volume 47, Number

1, 2004, pp. 76-81.

[3] Copeland, L. A Practitioner’s Guide to Software

Test Design, Artech House Publishers, Norwood,

Massachusetts, USA, 2004.

[4] Dias Neto, A.C., Subramanyan, R., Vieira, M., &

Travassos, G.H. “A Survey on Model-based Testing

Approaches: A Systematic Review,” Proceedings of

the 1st ACM International Workshop on Empirical

Assessment of Software Engineering Languages

and Technologies, Atlanta, Georgia, USA, Novem-

ber 5-9, 2007, pp. 31-36.

[5] Escalona, M.J., Gutiérrez, J.J., Mejías, M., Aragón,

G., Torres, J., and Domínguez, F.J. “An Overview

on Test Generation from Functional Requirements,”

Journal of Systems and Software, Volume 84,

Number 8, 2011, pp. 1379-1393.

[6] Hass, A.M. Guide to Advanced Software Testing

(2
nd

 Edition), Artech House Publishers, Norwood,

Massachusetts, USA, 2014.

[7] IEEE Std. 829-1998. “IEEE Standard for Software

Test Documentation,”

http://faculty.ksu.edu.sa/mohamedbatouche/SWE%

20434/IEEE%20Std%20829%20-%201998.pdf,

sponsored by the Software Engineering Technical

Committee of the IEEE Computer Society, Septem-

ber 16, 1998, pp. 1-59.

[8] Lee, C.C. and Friedman, J. “Requirements Model-

ing and Automated Requirements-based Test Gen-

eration,” SAE International Journal of Aerospace,

Volume 6, Number 2, 2013, pp. 607-615.

[9] Mathur, A.P. Foundations of Software Testing (2
nd

Edition), Dorling Kindersley (India) Pvt. Ltd,

Noida, India, 2013.

[10] Nagpal, K. and Chawla, R. “Improvement of Soft-

ware Development Process: A New SDLC Model,”

International Journal of Latest Research in Science

and Technology, Volume 1, Number 3, 2012, pp.

217-224.

[11] Nebut, C., Fleurey, F., Le Traon, Y., and Jezequel,

J.M. “Automatic Test Generation: A Use Case

Driven Approach,” IEEE Transactions on Software

Engineering, Volume 32, Number 3, 2006, pp. 140-

155.

[12] Pretschner, A., Prenninger, W., Wagner, S.,

Kühnel, C., Baumgartner, M., Sostawa, B., Zölch,

R., and Stauner, T. “One Evaluation of Model-

based Testing and Its Automation,” Proceedings of

the 27th International Conference on Software En-

gineering, St. Louis, Missouri, USA, May 15-21,

2005, pp. 392-401.

[13] Tahat, L.H., Vaysburg, B., Korel, B., and Bader,

A.J. “Requirement-based Automated Black-box

Test Generation,” Proceedings of the 25th Comput-

er Software and Applications Conference, Chicago,

Illinois, USA, October 8-12, 2001, pp. 489-495.

[14] Vijay, N. “Little Joe Model of Software Testing,”

Software Solutions Lab, Honeywell, Bangalore, In-

dia, 2001, pp. 1-12.

[15] Weyuker, E., Goradia, T., and Singh, A. “Automat-

ically Generating Test Data from a Boolean Speci-

fication,” IEEE Transactions on Software Engi-

neering, Volume 20, Number 5, 1994, pp. 353-363.

AUTHOR BIOGRAPHIES

Charles P. Morgan is a Technical Advisor for

FedEx Services Corporation, located in Memphis, Ten-

nessee, and is a graduate of the University of Memphis,

B.S. in Engineering Technology, 1979. Charles has over

38 years of experience in the information technology field

in various disciplines, including software development,

software testing, and technology research. He is currently

active in the areas of software testing tools development,

mobile device software, and solutions architec-

ture. Charles developed the ATCG: Automated Test Case

Generator software, as well as other applications which

utilize innovative techniques to more efficiently automate

manual processes.

Mark L. Gillenson is Professor and formerly

Department Chair of Business Information and Technolo-

gy at the University of Memphis. He is also the Director

of the Big Data and Analytics Research Cluster in the uni-

versity’s FedEx Institute of Technology. He is the author

of several books on database management and numerous

journal articles. His current research interests include ad-

vanced database systems and software testing.

Xihui Zhang is an Associate Professor of Com-

puter Information Systems in the College of Business of

the University of North Alabama. He earned a Ph.D. in

Business Administration with a concentration in Manage-

ment Information Systems from the University of Mem-

http://benderrbt.com/Bender-Requirements%20Based%20Testing%20Process%20Overview.pdf
http://benderrbt.com/Bender-Requirements%20Based%20Testing%20Process%20Overview.pdf
http://benderrbt.com/Bender-Requirements%20Based%20Testing%20Process%20Overview.pdf
http://benderrbt.com/Bender-Requirements%20Based%20Testing%20Process%20Overview.pdf
http://faculty.ksu.edu.sa/mohamedbatouche/SWE%20434/IEEE%20Std%20829%20-%201998.pdf
http://faculty.ksu.edu.sa/mohamedbatouche/SWE%20434/IEEE%20Std%20829%20-%201998.pdf
http://www.una.edu/
http://www.memphis.edu/

ATCG: AN AUTOMATED TEST CASE GENERATOR

Journal of Information Technology Management Volume XXVII, Number 3, 2016

120

phis, 2009. He has published in such leading journals as

the Journal of Strategic Information Systems, Information

& Management, and Journal of Database Management.

He serves as the Managing Editor of The Data Base for

Advances in Information Systems, and he also serves on

the editorial review board for several academic journals,

including the Journal of Computer Information Systems,

Journal of Information Systems Education, and Journal of

Information Technology Management.

Son N. Bui is an Assistant Professor of Market-

ing & Business Analytics department in the College of

Business of the Texas A&M University–Commerce. His

work focuses on the application of business analytics for

small and medium enterprises. His researches have been

published in Journal of Information Technology Manage-

ment and Information Technology & Management.

Euntae “Ted” Lee received his Ph.D. in Man-

agement Information Systems from University of Nebras-

ka and M.S. in Computer Science from The Pennsylvania

State University, and B.S. in Atmospheric Science from

Seoul National University, Seoul, Korea. His primary

research interests are knowledge engineering and man-

agement, business rule managements systems, database

systems, business intelligence and analytics, software test-

ing, and strategic use of organizational information sys-

tems. Dr. Lee’s work has been published in many IT relat-

ed journals and conference proceedings.

