
SCHEDULING REQUIREMENTS IMPLEMENTATION IN AGILE SOFTWARE DEVELOPMENT

Journal of Information Technology Management Volume XXVII, Number 4, 2016

169

Journal of Information Technology Management

ISSN #1042-1319

A Publication of the Association of Management

A HEURISTIC METHOD FOR SCHEDULING REQUIREMENTS

IMPLEMENTATION IN AGILE SOFTWARE DEVELOPMENT

PROJECTS

MARK L. GILLENSON

UNIVERSITY OF MEMPHIS
mgillnsn@memphis.edu

MICHAEL J. RACER

UNIVERSITY OF MEMPHIS
mracer@memphis.edu

XIHUI ZHANG

UNIVERSITY OF NORTH ALABAMA
xzhang6@una.edu

RUBY E. BOOTH

UNIVERSITY OF MEMPHIS
rbooth@memphis.edu

JOHN P. DUGAN

COROUTINE, LLC
jdugan@coroutine.com

ABSTRACT

One of the challenges of successfully developing software using an agile software development methodology is the

determination of which requirements or features to implement in which of the agile iterations. These decisions involve priori-

ties, risk, development costs, and testing costs. Furthermore, initial decisions may have to be revised on the fly during devel-

opment due to the possibility, embraced by the agile development philosophy, of changes to the set of requirements, and to

the possibility of software failure during certain aspects of testing that require code fixes before further development can con-

tinue. With a sample project, this paper presents a heuristic method for scheduling requirements implementation in agile de-

velopment iterations, taking into account all of the aforementioned considerations.

Keywords: heuristic method, scheduling requirements implementation, agile development, software development and testing

SCHEDULING REQUIREMENTS IMPLEMENTATION IN AGILE SOFTWARE DEVELOPMENT

Journal of Information Technology Management Volume XXVII, Number 4, 2016

170

INTRODUCTION

Agile software development is the culmination of

a variety of rapid application development techniques that

arose in response to the well-known problems of tradi-

tional “waterfall” software development [11] [21]. These

problems include overly long development timelines, a

lack of even a partial result to evaluate until the entire

project is completed, an intolerance for changing or addi-

tional requirements, and cumbersome testing that often

does not commence until the project is completed [1] [4].

Furthermore, traditional software development typically

separates the developers from the end-users through most

of the development process, which runs counter to today’s

philosophy of closely integrating the “business people”

with the information technology staff. As a result of all of

these issues, software has often been late (if completed at

all), has often not matched the stated requirements, and

has contained an unacceptable number of defects [22]

[32].

There are a variety of agile software develop-

ment methodologies, some of the best known of which

include scrum, extreme programming (XP), lean software

development (LSD), agile unified process (AUP), feature-

driven development (FDD), crystal methodologies, and

dynamic systems development method (DSDM) [11].

These generally include several common “agile develop-

ment” practices. There is a small, cross-functional devel-

opment team that includes programmers, testers, other IT

professionals as needed, and, very importantly, a user rep-

resentative, who work together in “iterations” that typical-

ly last one to four weeks, depending on the particular

methodology employed [9] [19]. Development begins

with the “critical path” or central feature of the application

and then adds other features as it progresses, “continuous-

ly integrating” additional features to progressively build

the application [12]. In this way, from early in develop-

ment, a semblance of the application can be evaluated and

tested. Requirements can be modified along the way, new

requirements can be added, and the user representative is

always there to verify and answer questions about the re-

quirements.

A challenge in agile development that has not

been comprehensively addressed in the information tech-

nology literature is the scheduling of the implementation

of application requirements or features across the series of

iterations that comprise the agile development timeline. A

carefully constructed agile implementation schedule

should include elements of feature priority, risk involved

of the feature not working properly, the cost of developing

the feature, and, very importantly, the cost of testing,

which is often not sufficiently taken into account [10].

Generally speaking, features of high priority (including

the critical path feature) should be developed first, subject

also to the degree of risk involved, to the development

cost, and to the testing cost. Furthermore, the cost of test-

ing is related to risk, as it stands to reason that a riskier

element of software should be more thoroughly tested.

There can also be mandatory orderings among some of the

requirements due to required sequencing of feature devel-

opment. Finally, any such scheduling scheme must be

dynamic in nature as it must be able to continually adjust

for software failures discovered by testing and by the ad-

dition of new features during development. We propose a

new and comprehensive agile feature development sched-

uling procedure that takes all of these issues into account,

and breaks new ground.

LITERATURE REVIEW

There are three distinct bodies of literature that

relate to the problem of scheduling requirements and fea-

tures for implementation and testing in agile development

iterations: the body of literature that describes agile soft-

ware development methodologies, the literature on soft-

ware testing in general, and the discipline known as

“scheduling” which in turn is considered to be a compo-

nent of the field of operations management.

A considerable amount of agile development

practice has already taken place and a considerable

amount of literature has already been written about it,

dating back over a twenty-year period [19] [21] [22] [27]

[29]. All of these references describe the concept of the

“iteration,” which is central to agile software development

and to the subject of this paper. A more recent survey of

agile software development methodologies is found in

[11]. A discussion of the importance of “daily testing” and

its cost-reducing benefits, which is directly related to the

subject of this paper, is found in [20].

The literature on software testing goes back at

least as far as the classic The art of software testing [23].

Some of the software testing literature is purely technical

in nature (e.g., [1] [7] [16]). Some of the literature is more

managerial in nature (e.g., [6] [8] [15]). And some of the

literature encompasses both technical and managerial as-

pects (e.g., [14] [24]). An interesting book that describes

the software testing philosophy and methodologies of one

company is authored by Whittaker et al. [32].

Further, the two fields of agile software devel-

opment and software testing converged with the unique

book Agile testing: A practical guide for testers and agile

teams [9] and its sequel, More agile testing: Learning

journeys for the whole team [12].

SCHEDULING REQUIREMENTS IMPLEMENTATION IN AGILE SOFTWARE DEVELOPMENT

Journal of Information Technology Management Volume XXVII, Number 4, 2016

171

The classic, comprehensive reference on schedul-

ing problems is [25], while more compact discussions on

the topic are found in [26] and [28]. “An update” that

provides a good overview of scheduling heuristics is [17].

Other references on scheduling will be cited in the sec-

tions below where they relate to our methodology.

A HEURISTIC METHOD

Much of the literature on scheduling, specifically

“resource-constrained project scheduling” (e.g., [2] [30]

[31]) considers specific problems for which specific solu-

tions are developed (e.g., [5], which discusses scheduling

tests in automotive development projects). We believe

that our procedure for scheduling requirements and fea-

tures among the iterations of an agile development effort

is equally unique and has not been addressed in the litera-

ture to date. However, we have found elements of devel-

opment methodologies in the scheduling literature that,

while they are not based on the problem of software de-

velopment, do relate to our problem in interesting ways.

An exception, which does discuss scheduling and inspec-

tion in software development projects (but, not in agile

software development projects, which limits its value to

us) is [13]. We shall cite these papers where appropriate.

Consider that there is a set of requirements la-

beled A-X, each of which is to be implemented as a soft-

ware module. In the agile development environment, con-

sider that there are n iterations, each of which has a devel-

opment capacity of c person days. That is, a certain

amount of time has been allotted for the application de-

velopment effort and therefore there are a limited number

of available iterations, each with the same capacity. Each

requirement is assigned a relative priority, p, on a scale of

1-5 where 1 is the highest priority and 5 is the lowest (see

[5] for discussions of ordering tasks based on priorities).

Each of the requirements (and its associated software

module) is assigned a relative risk, r, on a scale of 1-5

where 1 is the lowest risk and 5 is the highest. There is

also the possibility of mandatory orderings among the

requirements where one requirement must be implemented

before another, regardless of other considerations. This

can happen, for example, when it is more convenient to

test a particular software module after another has been

completed.

Each requirement is assigned an estimated devel-

opment cost in person days, d, which in the spirit of the

agile development environment includes both coding and

initial testing as the code is being developed. In this mod-

el, as is the case in many agile development environments,

there is an additional level of testing with a testing cost, t.

This additional level of testing could be comprised of fur-

ther testing by the developers and testers on the agile

team, could be a level of user acceptance testing, or could

be a combination of the two. The additional testing cost, t,

can be established on the same linear scale as the risk, r,

or can be a non-linear factor of the risk, i.e., a riskier

software module might require much more testing than a

less risky module. Henceforth, when we refer to “testing,”

we are referring to this additional level of testing. Finally,

the estimated total cost of developing and testing a soft-

ware module, d+t, is dt.

Some modules will be developed and tested in

the same iteration. Any necessary rework will be done in

the next iteration. Some modules will be developed in

iteration x, tested in iteration x+1, and have any necessary

rework done in iteration x+2. Also, in the agile software

development paradigm, new requirements may be intro-

duced at any time during development.

The procedure begins with creating a require-

ments matrix by listing the requirements in order by their

A-X labels. Each requirement is listed with its develop-

ment cost, d, its priority, p, its risk, r, its (additional) test-

ing cost, t, and its total cost, dt. Next, the rows of the ma-

trix are reordered by highest to lowest priority, within

equal priority by lowest to highest risk, and within equal

priority and risk by lowest total cost. This strategy priori-

tizes the most important items that are most likely to sur-

vive the testing process and actually make it to production

within the given timeframe.

For the first iteration and for every successive it-

eration, the remaining requirements in the requirements

matrix and their associated software modules are assigned

to the iteration in priority order, subject to the capacity of

the iteration. If more than one of the highest priority re-

quirements remain, the one that will fit within the remain-

ing capacity of the iteration will be chosen. If the remain-

ing capacity will accommodate the development but not

the testing of the next requirement in line, the develop-

ment will be done in this iteration and the testing will be

held over to the next iteration. In this latter case, the test-

ing of this software module will be first in line in assign-

ment to the next iteration.

If a requirement is developed and successfully

tested in an iteration, it is removed from the requirements

matrix. If only the development was performed in a given

iteration, it remains in the requirements matrix but with a

development cost of zero and a recalculated total cost

(which is equal to the testing cost, since that is the only

cost remaining for that requirement).

If a requirement fails its test and thus requires

more development time to fix whatever caused it to fail its

test, it remains in the requirements matrix with a new es-

timated development cost and a new estimated testing

SCHEDULING REQUIREMENTS IMPLEMENTATION IN AGILE SOFTWARE DEVELOPMENT

Journal of Information Technology Management Volume XXVII, Number 4, 2016

172

cost. Lambrechts et al. [18] consider changes to project

scheduling due to failures in component testing (not relat-

ed to software development). Ashtiani et al. [3] consider

mid-project schedule alterations due to changes in re-

source needs.

If at any time a new requirement is added to the

project, it is inserted into the requirements matrix in its

proper priority, risk, and total cost order. The procedure

iterates until either all of the requirements have been satis-

fied with successfully tested software modules, or the pro-

cess has run out of iterations (and thus time) to work with.

A SAMPLE AGILE SOFTWARE

DEVELOPMENT PROJECT

First, we present the content of the system and

the basic definition of those units to be scheduled.

 10 requirements A-J

 10 software modules to be developed

 5 iterations planned

 Capacity of each iteration: 16 person days

(For the sake of clarity in the description, we

will get as close as possible to the 16 person

day limit in each iteration without resorting

to fractional days or costs.)

 Each requirement has:

o Development cost and testing cost in

person days

o Priority, 1-5, 1 is highest, 5 is lowest

o Risk, 1-5, 1 is lowest, 5 is highest

o Testing cost is directly related to risk

o Possible mandatory ordering among re-

quirements

We will consider the following properties to in-

fluence the decision-making process.

 Some modules will be developed and tested

in the same iteration. Any necessary rework

will be done in the next iteration.

 Some modules will be developed in iteration

n, tested in iteration n+1, and have any nec-

essary rework done in iteration n+2.

 New requirements may be introduced during

development.

Table 1: Ten Initial Modules to Be Developed and Tested

Requirement Development Cost Priority Risk Testing Cost Total Cost Mandatory Ordering

A 3 1 4 4 7 A must be in Iteration 1

B 2 4 5 5 7

C 1 3 2 2 3

D 4 2 3 3 7

E 4 4 5 5 9 E must be done before G

F 2 1 2 2 4 F must be done before G & H

G 2 5 1 1 3

H 5 2 1 1 6

I 4 3 3 3 7

J 2 5 4 4 6

Before starting the iterations, we need to sort the

matrix the following way:

 Sort the rows of the matrix by highest priori-

ty, then lowest risk, and finally lowest total

cost.

 This strategy prioritizes the most important

items that are most likely to survive the test-

ing process and actually make it to produc-

tion within the given timeframe.

 However, the capacity remaining in an itera-

tion may cause ordering changes.

SCHEDULING REQUIREMENTS IMPLEMENTATION IN AGILE SOFTWARE DEVELOPMENT

Journal of Information Technology Management Volume XXVII, Number 4, 2016

173

Table 2: Ten Initial Modules (Sorted) to Be Developed and Tested

Requirement Development Cost Priority Risk Testing Cost Total Cost Mandatory Ordering

F 2 1 2 2 4 F must be done before G & H

A 3 1 4 4 7 A must be in Iteration 1

H 5 2 1 1 6

D 4 2 3 3 7

C 1 3 2 2 3

I 4 3 3 3 7

B 2 4 5 5 7

E 4 4 5 5 9 E must be done before G

G 2 5 1 1 3

J 2 5 4 4 6

Iteration 1

 Iteration 1, begins by implementing the re-

quirements with Priority 1, Requirements A

and F.

 Both their development and testing will be

performed in Iteration 1.

 Their combined total cost is 11, leaving an-

other 5 person-days of capacity in Iteration

1.

 There are two requirements with Priority 2,

Requirements D and H.

 D’s total cost of 7 exceeds the remaining ca-

pacity in Iteration 1 and so does H’s total

cost of 6.

 So, a decision is made to perform only the

development but not the testing of H (H is

lower in risk than D) in Iteration 1 at a cost

of 5 person-days.

Table 3: Tasks Performed in Iteration 1

Iteration 1

A 7

F 4

H 5

Development and testing conducted on the code

for Requirements A and F during Iteration 1 and possibly

right after Iteration 1 were successful.

 The requirements matrix going forward no

longer includes Requirements A and F.

 Since the code for Requirement H was de-

veloped but not tested, it remains in the ma-

trix but with a development cost of 0.

Table 4: Eight Modules to Be Developed and Tested before Iteration 2

Requirement Development Cost Priority Risk Testing Cost Total Cost Mandatory Ordering

H 0 2 1 1 1

D 4 2 3 3 7

C 1 3 2 2 3

I 4 3 3 3 7

B 2 4 5 5 7

E 4 4 5 5 9 E must be done before G

G 2 5 1 1 3

J 2 5 4 4 6

SCHEDULING REQUIREMENTS IMPLEMENTATION IN AGILE SOFTWARE DEVELOPMENT

Journal of Information Technology Management Volume XXVII, Number 4, 2016

174

Iteration 2

 Iteration 2 begins with the testing of Re-

quirement H.

 Then it picks up the remaining Priority 2 re-

quirement, Requirement D, for development

and testing.

 The total capacity needed is 8 person-days,

leaving 8 person-days of additional capacity.

 The Priority 3 requirements are C and I but

only Requirement C, with a total cost of 3

for development and testing, will fit in the

remaining capacity of Iteration 2 and so it is

included. Note that Requirement C is lower

in risk than Requirement I.

 Finally, only the development of Require-

ment I is included in Iteration 2 due to the

limitation of the remaining capacity in the it-

eration.

Table 5: Tasks Performed in Iterations 1 and 2

Iteration 1 Iteration 2

A 7 H 1

F 4 D 7

H 5 C 3

 I 4

 After Iteration 2, testing indicated that the

code for Requirement C needed 1 more per-

son-day of development time to fix discov-

ered defects and 1 more person-day of test-

ing. Also, the testing of Requirement H indi-

cated that it needed more work: 2 more per-

son-days of development and 2 more days of

testing.

 In addition, a new requirement, Requirement

K, with Priority 1, was introduced into the

project.

 Since Requirement I was developed but not

tested in Iteration 2, it now appears in the

matrix with development cost 0.

Table 6: Eight Modules to Be Developed and Tested before Iteration 3

Requirement Development Cost Priority Risk Testing Cost Total Cost Mandatory Ordering

K 3 1 2 2 5

H 2 2 1 2 4

C 1 3 2 1 2

I 0 3 3 3 3

B 2 4 5 5 7

E 4 4 5 5 9 E must be done before G

G 2 5 1 1 3

J 2 5 4 4 6

Iteration 3

 Since the new Requirement K is Priority 1,

its code is developed and tested in the next

iteration, Iteration 3.

 The rework on Requirement H is performed

and so is the rework on Requirement C.

 Finally, the testing of Requirement I, which

was developed but not tested in the previous

iteration is performed in Iteration 3.

Table 7: Tasks Performed in Iterations 1, 2, 3

Iteration 1 Iteration 2 Iteration 3

A 7 H 1 K 5

F 4 D 7 H 4

H 5 C 3 C 2

 I 4 I 3

 Iteration 3 successfully completed the devel-

opment (or rework) and testing of the code

for Requirements K, H, and C.

 The testing of the code for Requirement I

indicated that it needed more work: 2 more

person-days of development and 2 more per-

son-days of testing.

SCHEDULING REQUIREMENTS IMPLEMENTATION IN AGILE SOFTWARE DEVELOPMENT

Journal of Information Technology Management Volume XXVII, Number 4, 2016

175

Table 8: Five Modules to Be Developed and Tested before Iteration 4

Requirement Development Cost Priority Risk Testing Cost Total Cost Mandatory Ordering

I 2 3 3 2 4

B 2 4 5 5 7

E 4 4 5 5 9 E must be done before G

G 2 5 1 1 3

J 2 5 4 4 6

Iteration 4

 Iteration 4 will begin with the needed rework

of Requirement I.

 It will also include the development and test-

ing of Requirement B.

 Because of the stated mandatory ordering

between Requirements E and G (plus the

higher priority of Requirement E), and the

limited capacity left in Iteration 4, the devel-

opment of the code for Requirement E will

be done in Iteration 4, but not its testing as

Iteration 4 does not have enough remaining

capacity for Requirement E’s testing.

Table 9: Tasks Performed in Iterations 1, 2, 3,

and 4

Iteration 1 Iteration 2 Iteration 3 Iteration 4

A 7 H 1 K 5 I 4

F 4 D 7 H 4 B 7

H 5 C 3 C 2 E 4

 I 4 I 3

 The code for Requirement I was tested suc-

cessfully and so it was completed.

 The code for Requirement E must still be

tested, since it was only developed in the

previous iteration.

 The testing of Requirement B indicated that

it needed more work: 2 more person-days of

development and 3 more person-days of test-

ing.

Table 10: Four Modules to Be Developed and Tested before Iteration 5

Requirement Development Cost Priority Risk Testing Cost Total Cost Mandatory Ordering

B 2 4 5 3 5

E 0 4 5 5 5 E must be done before G

G 2 5 1 1 3

J 2 5 4 4 6

Iteration 5

 Iteration 5 will include the rework of the

code for Requirement B.

 The testing of Requirement E.

 The development and testing of Requirement

G.

Table 11: Tasks Performed in Iterations 1, 2, 3,

4, and 5

Iteration

1

Iteration

2

Iteration

3

Iteration

4

Iteration

5

A 7 H 1 K 5 I 4 B 5

F 4 D 7 H 4 B 7 E 5

H 5 C 3 C 2 E 4 G 3

 I 4 I 3

SCHEDULING REQUIREMENTS IMPLEMENTATION IN AGILE SOFTWARE DEVELOPMENT

Journal of Information Technology Management Volume XXVII, Number 4, 2016

176

 Requirements B, E, and G, were successfully

tested in Iteration 5 and so are completed.

 Since only 5 iterations were planned, it was

decided that the development and testing of

Requirement J will be held over for a later

release.

CONCLUSION

When new information systems technologies are

introduced, companies tend to “try them out” on small,

low-risk projects, in effect as experiments. Those technol-

ogies that show promise are gradually rolled-out into

mainstream projects. A good example of this was the in-

troduction of relational database management in around

1980. Once experimental, it is now the technology of

choice for virtually all new transactional system develop-

ment and is also heavily used in decision support envi-

ronments. In a similar fashion, the use of agile software

development began cautiously but appears to be gaining

ground rapidly, especially for smaller application devel-

opment projects and, to some extent experimentally, for

larger ones.

A common misconception about agile software

development is that it requires no project planning. While

in some respects it requires less project planning than pro-

jects developed using the traditional system development

lifecycle approach, it does require planning. Further, and

this is central to the point of this paper, the very nature of

agile development requires the continual readjustment of

the development plan. This is key to the contribution of

the heuristic method described herein.

REFERENCES

[1] Ammann, P. and Offutt, J. Introduction to Software

Testing, Cambridge University Press, New York,

NY, USA, 2008.

[2] Artigues, C., Michelon, P., and Reusser, S. “Inser-

tion Techniques for Static and Dynamic Resource-

constrained Project Scheduling,” European Journal

of Operational Research, Volume 149, Number 2,

2003, pp. 249-267.

[3] Ashtiani, B., Leus, R., and Aryanezhad, M.-B.

“New Competitive Results for the Stochastic Re-

source-constrained Project Scheduling Problem:

Exploring the Benefits of Pre-processing,” Journal

of Scheduling, Volume 14, Number 2, 2011, pp.

157-171.

[4] Austin, R. D. and Devin, L. “Weighing the Benefits

and Costs of Flexibility in Making Software: To-

ward a Contingency Theory of the Determinants of

Development Process Design,” Information Systems

Research, Volume 20, Number 3, 2009, pp. 462-

477.

[5] Bartels, J.-H. and Zimmermann, J. “Scheduling

Tests in Automotive R&D Projects,” European

Journal of Operational Research, Volume 193,

Number 3, 2009, pp. 805-819.

[6] Black, R. Critical Testing Processes: Plan, Pre-

pare, Perform, Perfect, Addison-Wesley, Boston,

MA, USA, 2003.

[7] Copeland, L. A Practitioner’s Guide to Software

Test Design, Artech House, Norwood, MA, USA,

2004.

[8] Craig, R. D. and Jaskiel, S. P. Systematic Software

Testing, Artech House, Norwood, MA, USA, 2002.

[9] Crispin, L. and Gregory, J. Agile Testing: A Practi-

cal Guide for Testers and Agile Teams, Addison-

Wesley, Boston, MA, USA, 2009.

[10] Dillon, R. L., Paté-Cornell, M. E., and Guikema, S.

D. “Optimal Use of Budget Reserves to Minimize

Technical and Management Failure Risks during

Complex Project Development,” IEEE Transac-

tions on Engineering Management, Volume 52,

Number 3, 2005, pp. 382-395.

[11] Dingsøyr, T., Nerur, S., Balijepally, V., and Moe,

N. B. “A Decade of Agile Methodologies: Towards

Explaining Agile Software Development,” Journal

of Systems and Software, Volume 85, Number 6,

2012, pp. 1213-1221.

[12] Gregory, J., and Crispin, L. More Agile Testing:

Learning Journeys for the Whole Team, Addison-

Wesley, Boston, MA, USA, 2014.

[13] Hanne, T. and Nickel, S. “A Multi-objective Evolu-

tionary Algorithm for Scheduling and Inspection

Planning in Software Development Projects,” Eu-

ropean Journal of Operational Research, Volume

167, Number 3, 2005, pp. 663-678.

[14] Hass, A. M. J. Guide to Advanced Software Testing

(2
nd

 ed.), Artech House, Norwood, MA, USA,

2014.

[15] IEEE Std. 829-2008. IEEE Standard for Software

and System Test Documentation, IEEE Computer

Society, New York, NY, USA, 2008.

[16] Jorgensen, P. C. Software Testing: A Craftsman’s

Approach (4
th

 ed.), Auerbach, Boca Raton, FL,

USA, 2013.

[17] Kolisch, R. and Hartmann, S. “Experimental Inves-

tigation of Heuristics for Resource-constrained Pro-

ject Scheduling: An Update,” European Journal of

Operational Research, Volume 174, Number 1,

2006, pp. 23-37.

SCHEDULING REQUIREMENTS IMPLEMENTATION IN AGILE SOFTWARE DEVELOPMENT

Journal of Information Technology Management Volume XXVII, Number 4, 2016

177

[18] Lambrechts, O., Demeulemeester, E., and

Herroelen, W. “Proactive and Reactive Strategies

for Resource-constrained Project Scheduling with

Uncertain Resource Availabilities,” Journal of

scheduling, Volume 11, Number 2, 2008, pp. 121-

136.

[19] Larman, C. Agile & Iterative Development: A Man-

ager’s Guide, Addison-Wesley, Boston, MA, USA,

2004.

[20] Martin, K. and Hoffman, B. “An Open Source Ap-

proach to Developing Software in a Small Organi-

zation,” IEEE Software, Volume 24, Number 1,

2007, pp. 46-53.

[21] Martin, R. C. Agile Software Development: Princi-

ples, Patterns, and Practices, Prentice-Hall, Upper

Saddle River, NJ, USA, 2002.

[22] McConnell, S. Rapid Development: Taming Wild

Software Schedule, Microsoft Press, Redmond,

WA, USA, 1996.

[23] Myers, G. J. The Art of Software Testing, John

Wiley & Sons, Hoboken, NJ, USA, 1979.

[24] Naik, K. and Tripathy, P. Software Testing and

Quality Assurance: Theory and Practice. John

Wiley & Sons, Hoboken, NJ, USA, 2008.

[25] Pinedo, M. L. Scheduling: Theory, Algorithms, and

Systems (4
th

 ed.), Springer, New York, NY, USA,

2012.

[26] Russell, R. S. and Taylor, B. W. Operations and

Supply Chain Management (8
th

 ed.), John Wiley &

Sons, Hoboken, NJ, USA, 2014.

[27] Shore, J. and Warden, S. The Art of Agile Develop-

ment, O’Reilly Media, Sebastopol, CA, USA, 2008.

[28] Stevenson, W. J. Operations Management (12
th

ed.), McGraw-Hill Education, New York, NY,

USA, 2015.

[29] Subramaniam, V. and Hunt, A. Practices of an Ag-

ile Developer: Working in the Real World, The

Pragmatic Bookshelf, Raleigh, NC, USA, 2006.

[30] Tseng, L.-Y. and Chen, S.-C. “A Hybrid

Metaheuristic for the Resource-constrained Project

Scheduling Problem,” European Journal of Opera-

tional Research, Volume 175, Number 2, 2006, pp.

707-721.

[31] Tseng, L.-Y. and Chen, S.-C. “Two-phase Genetic

Local Search Algorithm for the Multimode Re-

source-constrained Project Scheduling Problem,”

IEEE Transactions on Evolutionary Computation,

Volume 13, Number 4, 2009, pp. 848-857.

[32] Whittaker, J., Arbon, J., and Carollo, J. How

Google Tests Software, Addison-Wesley, Boston,

MA, USA, 2012.

AUTHOR BIOGRAPHIES

Mark L. Gillenson is Professor and formerly

Department Chair of Business Information and Technolo-

gy at the University of Memphis. He is also the Director

of the Big Data and Analytics Research Cluster in the uni-

versity’s FedEx Institute of Technology. He is the author

of several books on database management and numerous

journal articles. His current research interests include ad-

vanced database systems and software testing.

Michael J. Racer is Associate Professor of

Marketing and Supply Chain Management in the Fogel-

man College of Business and Economics of the University

of Memphis. He received his BA in Mathematical Scienc-

es from Rice University, and his M.S. and Ph.D. in Opera-

tions Research from the University of California at Berke-

ley. He is the Associate Director of eSOL, the Enterprise

Simulation and Optimization Laboratory, and the Associ-

ate Director for Supply Chain in the Center for Biofuels

Energy and Sustainable Technologies. He has been a

member of INFORMS since 1990, and is currently the

Presidents for INFORM-ed. He has published in the Eu-

ropean Journal of Operations Research, Management

Science, Annals of Operations Research, Interfaces,

Journal of Professional Issues in Engineering Education

and Practice, and IIE Transactions.

Xihui Zhang is an Associate Professor of Com-

puter Information Systems in the College of Business of

the University of North Alabama. He earned a Ph.D. in

Business Administration with a concentration in Manage-

ment Information Systems from the University of Mem-

phis, 2009. His work has been published in the Journal of

Strategic Information Systems, Information & Manage-

ment, Journal of Database Management, Journal of Or-

ganizational and End User Computing, Journal of Com-

puter Information Systems, Journal of Information Sys-

tems Education, and Journal of Information Technology

Management, among others. He serves as the Managing

Editor of The Data Base for Advances in Information

Systems, and he also serves on the editorial review board

for several academic journals, including the Journal of

SCHEDULING REQUIREMENTS IMPLEMENTATION IN AGILE SOFTWARE DEVELOPMENT

Journal of Information Technology Management Volume XXVII, Number 4, 2016

178

Computer Information Systems, Journal of Infor-

mation Systems Education, and Journal of Information

Technology Management.

Ruby E. Booth is a doctoral student in Business

Information and Technology at the University of Mem-

phis. She teaches critical thinking and project manage-

ment, with a focus on the use of data analytics to solve

business problems. Her research interests are in the area

of human factors in cybersecurity.

John P. Dugan is a principal at Coroutine, a

software consultancy that specializes in new product de-

velopment. He has two decades of experience designing

and building software systems for companies ranging from

the Fortune 500 to early-stage start-ups. Mr. Dugan has

overseen Coroutine’s agile practices for the last ten years

and routinely helps clients adopt new strategies for man-

aging their internal processes. He lives in Boulder, CO,

with his wife and two sons.

